摘要:
An ultrasonic diagnostic imaging system is described in which two planes of a volumetric region which are in different elevation planes are scanned in real time. In one embodiment the two planes are scanned with less than the maximum number of scanlines which the transducer can transmit in a single plane. A user control enables the two planes to be moved laterally without moving the transducer probe. In another embodiment each image plane contains a color box depicting flow or motion in the same respective position in the image. The color boxes of the two images can be sized and positioned in tandem so that both are in the same corresponding area of the two images.
摘要:
The present invention relates to contrast imaging. More particularly, the present invention relates to apparatus and methods for ultrasound contrast imaging in which a high-MI signal destroys contrast agent in a blood supply region of the heart after previously infused thoroughly with contrast agent enhanced blood, and a portion of the heart other than the blood supply region is imaged with low MI ultrasound to track the decrease in contrast agent containing blood due to perfusion into the “other then the blood supply region” by blood from the blood supply region, as a function of time.
摘要:
A user control of a medical imaging system is normally operated by the user to control a function of the system such as the position of one image plane relative to another. There are a number of modes in which the relative plane position can be varied, such as varying the relative elevation position or the relative lateral position of the planes. To switch from one mode to the other the user moves the user control rapidly to effect a change of the mode of operation being controlled. A processor senses the high speed motion of the user control and changes the mode being controlled by the user control to a new mode. The user control may comprise a trackball, rotary knob, linear slider, touchpad, or other control panel user control.
摘要:
An ultrasonic probe having a selector switch and a housing is provided. The ultrasonic probe further includes an ultrasonic transducer assembly and associated circuitry. A beamformer may be included in the ultrasonic probe. The selector switch has at least two user-selectable positions or states. The selector switch and the associated circuitry control an output acoustic beam of the ultrasonic imaging apparatus in accordance with the user-selectable position or state.
摘要:
A system and method for individually varying the orientation of scan lines in at least two dimensions in an ultrasound scan are disclosed. In one embodiment, the invention includes a system for generating a three-dimensional ultrasound volume scan, comprising a transducer probe having elements arranged in a plurality of dimensions and a system controller capable of generating a scan line apparently emanating from a location other than the geographic center of the transducer probe.
摘要:
A wireless ultrasound probe has a probe case enclosing a transducer array, an acquisition circuit, a transceiver, a power circuit, and a rechargeable battery. The wireless probe also has a cable connector accessible from the exterior of the probe, for connection of a cable providing battery charging potential and/or imaging signal conductors for wire communication with a host system. An example is given of a magnetically attachable cable which requires no openings or indentations that could trap gel and other contaminants. Preferably the remote end of the cable uses a standardized connector, enabling the wireless probe to be recharged from standard devices like computers.
摘要:
A wireless ultrasound probe has a probe case enclosing a transducer array, an acquisition circuit, a transceiver and a battery. The probe also includes a loudspeaker which produces audible sounds as a function of the range between the wireless probe and a host system. When the probe is within a near field range of the host system, the loudspeaker is silent. But if the probe is moved to an intermediate or a far field range from the host system, the loudspeaker sounds an alert. This audible alert can be used to locate the probe by transmitting a paging signal which, upon reception by the probe, causes the probe to sound its alert. If the probe is moved to an unauthorized location where it is within range of a transmitter or receiver, the reception of a signal by the probe, the transmitter, or receiver will sound an alert signaling the unauthorized presence of the wireless probe.
摘要:
An ultrasound assembly comprises a module having an input side and an output side; an ultrasound transducer comprising a micro-beamformer configured for attachment to and detachment from the input side of the module; and a display attached to the output side of the module. An ultrasound system is also described.
摘要:
A wireless ultrasound probe has a probe case enclosing a transducer array, an acquisition circuit, a transceiver and a battery. The probe also includes a loudspeaker which produces audible sounds as a function of the range between the wireless probe and a host system. When the probe is within a near field range of the host system, the loudspeaker is silent. But if the probe is moved to an intermediate or a far field range from the host system, the loudspeaker sounds an alert. This audible alert can be used to locate the probe by transmitting a paging signal which, upon reception by the probe, causes the probe to sound its alert. If the probe is moved to an unauthorized location where it is within range of a transmitter or receiver, the reception of a signal by the probe, the transmitter, or receiver will sound an alert signaling the unauthorized presence of the wireless probe.
摘要:
A wireless ultrasound probe has a probe case enclosing a transducer array stack, a microbeamformer coupled to the transducer array, an acquisition module, an ultra wideband transceiver, a power circuit, and a rechargeable battery with a total weight of 300 grams or less. Preferably the total weight of these components does not exceed 150 grams, and most preferably the total weight of these components does not exceed 130 grams. The transceiver wirelessly transmits echo information signals to an ultrasound system host where the signals may undergo additional ultrasound signal processing such as further beamforming, image processing and display. The battery is preferably a rechargeable battery and the antenna for the transceiver is located at the end of the probe opposite the transducer stack.