Abstract:
A display device includes a substrate having flexibility, a first surface and a second surface opposing the first surface, a display part arranged with a plurality of pixels above the first surface of the substrate, a frame part having a drive element for driving the plurality of pixels arranged around the display part, a mounting part mounted above the first surface of the substrate and including an individual circuit element and a connection element, a first adhesive layer above the second surface of the substrate and opposing the display part and the frame part, a first support film above the first adhesive layer, a second adhesive layer above the second surface of the substrate and opposing the mounting part, and a second support film above the second adhesive layer, wherein the first adhesive layer and the first support film separated from the second adhesive layer and the second support film.
Abstract:
A display device in an embodiment according to the present invention includes a pixel region includes a plurality of pixels arranged in a matrix, a first power source line arranged in the pixel region and provided with a first power source voltage supplying a current to the plurality of pixels, a second power source line located in a layer higher than the first power source line in the pixel region and including an intersection part intersecting the first power source line and provided with a second power source voltage different to the first power source voltage, a conducting layer interposed between the first power source line and the second power source line via an insulation layer and having at least one part overlapping the intersection part, a current detection portion electrically connected with the conducting layer.
Abstract:
A display device includes a display unit including a plurality of pixels respectively including thin film transistors; and a terminal unit including an array of a plurality of terminals. The display device includes a first insulating film provided on a substrate; the thin film transistors provided on the first insulating film; a second insulating film that is provided in the display unit and in the terminal unit and has openings located between the plurality of terminals; a plurality of signal lines that are provided on the second insulating film and are respectively connected to the thin film transistors, and a plurality of terminal lines that are provided on the second insulating film in the terminal unit; and a third insulating film that is located on the plurality of signal lines and the plurality of terminal lines and is formed of an organic insulating film.
Abstract:
A protective element includes a protective film including a first surface and a second surface opposite to the first surface; a first adhesive layer including an adhesive region on the first surface of the protective film; a first release film on the first adhesive layer; a second adhesive layer on the second surface of the protective film; a second release film on the second adhesive layer; a non-adhesive region located to surround the adhesive region, the non-adhesive region including a non-adhesive layer located between the first adhesive layer and the first release film; and a cutting portion located in the non-adhesive region and, as seen in a cross-sectional view, extending from a top surface of the protective film to a bottom surface of the non-adhesive layer.
Abstract:
A method of manufacturing a display device according to an embodiment of the present invention includes: placing a component via an adhesive material on one side of a base material containing a resin and having display area; stacking a protective film via a pressure-sensitive adhesive layer on the other side of the base material; and mounting the component on the base material by sandwiching and pressurizing the base material and the component using a pair of heads. An exposed portion in which no protective film is stacked is formed on the other side of the base material and is provided in correspondence with an area in which the component is provided, and one of the pair of heads has a contact portion, and the contact portion is housed within the exposed portion of the base material and the contact portion is brought into direct contact with the base material.
Abstract:
A display device in an embodiment according to the present invention includes a pixel region includes a plurality of pixels arranged in a matrix, a first power source line arranged in the pixel region and provided with a first power source voltage supplying a current to the plurality of pixels, a second power source line located in a layer higher than the first power source line in the pixel region and including an intersection part intersecting the first power source line and provided with a second power source voltage different to the first power source voltage, a conducting layer interposed between the first power source line and the second power source line via an insulation layer and having at least one part overlapping the intersection part, a current detection portion electrically connected with the conducting layer.
Abstract:
The present invention aims to control power consumption of a light emitting display device by reducing parasitic capacitance between wires in a drive circuit part of a periphery region. The light emitting display device of the present invention includes an insulation film arranged above a substrate, a first wiring arranged above the insulation film in a pixel region, a second wiring arranged above the insulation film in a periphery region of a periphery of the pixel region, a common electrode continuously arranged to the pixel region and the periphery region, a first insulation layer arranged between the first wiring and the common electrode, and a second insulation layer arranged between the second wiring and the common electrode and having a larger thickness than the first insulation layer.
Abstract:
In a display device including an device substrate arranged with a plurality of pixels arranged with a light emitting device, a color filter layer with different transmission bands corresponding to each of the pixels, and a color filter substrate arranged with an overcoat layer above the color filter layer, by arranging a first light shielding layer arranged corresponding to a matrix of pixels and a second light shielding layer wider than the first light shielding layer and separated from the first light shielding layer and on a side close to a pixel, light emitted in a diagonal direction leaking to an adjacent pixel enters the second light shielding layer and by increasing the length of a light path of the incident light, the light is absorbed and attenuated by the second light shielding layer and improvements in viewing angle characteristics are achieved without decreasing the aperture ratio of a pixel.
Abstract:
Steps for manufacturing an organic electroluminescent display device that can form an electrode pattern with high precision include forming a first insulating layer on a substrate and forming a first patterning layer, and forming a second patterning layer. The steps for manufacturing the organic electroluminescent display device further include forming a trench portion and forming an electrode layer on the second patterning layer and in the trench portion. In the step of forming the trench portion, an end of the first patterning layer exposed within the trench portion is etched to an outside more than an end of the second patterning layer exposed within the trench portion in a plan view, and in the step of forming the electrode layer, the electrode layer formed within the trench portion is isolated from the electrode layer formed outside of the trench portion.
Abstract:
A display device includes: multiple layers including a display element layer, the multiple layers including a sealing layer for covering the display element layer; and a polarization plate attached to a first layer and a second layer of the multiple layers with an adhesive layer. The multiple layers includes inorganic films and organic films. All of the inorganic films are disposed to avoid an edge area that is at least a part of a peripheral portion of the resin substrate. The polarization plate has an edge above the edge area of the resin substrate. The first layer is disposed to avoid the edge area of the resin substrate. The first layer at an edge has an upper surface sloping downward toward the edge area. The second layer has a portion in the edge area of the resin substrate and between the resin substrate and the adhesive layer.