Abstract:
An organic electroluminescent device with a touch sensor including: a first substrate; a second substrate arranged opposite to the first substrate; an organic EL element layer arranged above the first substrate; a first sealing film arranged toward the second substrate of the organic EL element layer, covering the organic EL element layer, and including a first inorganic layer; plural first detection electrodes extending in one direction, and arranged in parallel toward the second substrate of the first sealing film; a second sealing film arranged toward the second substrate of the first detection electrodes, and including a second inorganic layer; plural second detection electrodes extending in another direction different from the one direction, and arranged in parallel toward the second substrate of the second sealing film; and a touch sensor control unit controlling a potential to detect a touch with a display surface.
Abstract:
In a seal part where a translucent opposite substrate and an element substrate are bonded together, a peripheral member is provided in such a manner as to be buried in a sealing member. This prevents the sealing member from breaking, thus making it possible to make the seal part durable to improve the strength of the panel. Further, an output wiring connected to an electrode pattern of a sensing unit can be protected by being covered with a protective insulating layer. The peripheral member and the protective insulating layer can be formed by the same insulating material. This makes it possible to simplify the process to reduce production costs.
Abstract:
An organic electroluminescent device with a touch sensor including: a first substrate; a second substrate arranged opposite to the first substrate; an organic EL element layer arranged above the first substrate; a first sealing film arranged toward the second substrate of the organic EL element layer, covering the organic EL element layer, and including a first inorganic layer; plural first detection electrodes extending in one direction, and arranged in parallel toward the second substrate of the first sealing film; a second sealing film arranged toward the second substrate of the first detection electrodes, and including a second inorganic layer; plural second detection electrodes extending in another direction different from the one direction, and arranged in parallel toward the second substrate of the second sealing film; and a touch sensor control unit controlling a potential to detect a touch with a display surface.
Abstract:
An organic electroluminescent display device includes a first substrate having a pixel area including a plurality of pixels each including a plurality of sub pixels, a light emitting devices are provided in correspondence with the sub pixels, and a partition layer covering a peripheral portion of each of the sub pixels; and a second substrate having a sensing unit including a first electrode pattern extending in one direction and a second electrode pattern extending in a direction intersecting the one direction, and the first electrode pattern and the second electrode pattern is provided out of contact from each other. The first electrode pattern is located to overlap the partition layer so as to enclose the sub pixels. The first electrode pattern included in the sensing unit encloses the sub pixels, and thus light is prevented from leaking to adjacent sub pixels.
Abstract:
A display device includes a substrate; a transistor provided on the substrate; a first insulating film provided on the substrate and the transistor; a second insulating film provided on the first insulating film; an individual pixel electrode provided on the second insulating film; a light emitting layer provided on the individual pixel electrode; a common electrode provided on the light emitting layer; and a contact hole running through the first insulating film and the second insulating film and connecting a source or a drain of the transistor with the pixel electrode. The second insulating film has at least one recessed portion reaching the first insulating film; and the individual pixel electrode is provided along a top surface of the second insulating film and the first recessed portion.
Abstract:
An organic electroluminescent display device includes a first insulating layer that buries a peripheral portion of a first electrode and has an opening exposing an area of the first electrode inner to the peripheral portion thereof; a second electrode that is in contact with the first electrode in the opening and is provided continuously on a top surface of the first electrode and onto a top surface of the first insulating layer; a second insulating layer covering a peripheral portion of the second electrode; an organic EL layer; and a third electrode. The second electrode includes a stepped portion. An area where the stepped portion is included and the second electrode, the organic electroluminescence layer and the third electrode overlap each other is a light emitting area. Light emitted by the organic EL layer is reflected by the stepped portion.
Abstract:
A display device includes a flexible substrate having a display region including a plurality of pixels, each of the plurality of pixels having a pair of electrodes and a display element therebetween; a first electrode layer provided on the plurality of pixels; a second electrode layer provided on the first electrode layer; a third electrode layer provided on the second electrode layer; a piezoelectric material layer provided between the first electrode layer and the second electrode layer; and a flexible material layer provided between the second electrode layer and the third electrode layer.
Abstract:
A display device includes a flexible substrate having a display region including a plurality of pixels, each of the plurality of pixels having a pair of electrodes and a display element therebetween; a first electrode layer provided on the plurality of pixels; a second electrode layer provided on the first electrode layer; a third electrode layer provided on the second electrode layer; a piezoelectric material layer provided between the first electrode layer and the second electrode layer; and a flexible material layer provided between the second electrode layer and the third electrode layer.
Abstract:
An organic electroluminescent display device includes a first substrate having a pixel area including a plurality of pixels each including a plurality of sub pixels, a light emitting devices are provided in correspondence with the sub pixels, and a partition layer covering a peripheral portion of each of the sub pixels; and a second substrate having a sensing unit including a first electrode pattern extending in one direction and a second electrode pattern extending in a direction intersecting the one direction, and the first electrode pattern and the second electrode pattern is provided out of contact from each other. The first electrode pattern is located to overlap the partition layer so as to enclose the sub pixels. The first electrode pattern included in the sensing unit encloses the sub pixels, and thus light is prevented from leaking to adjacent sub pixels.
Abstract:
A display device includes an element substrate including a display area where a plurality of self-light-emitting elements are formed, and a driver IC disposed outside the display area in the element substrate. A first metal layer is disposed on the reverse side of the element substrate at a position opposite to the display area. A second metal layer is disposed with a space between the first metal layer and the second metal layer on the reverse side of the element substrate at a position opposite to the driver IC.