摘要:
An apparatus and method for automated use of phase abstraction for enhanced verification of circuit designs is provided. With the apparatus and method, latches are “colored,” i.e. classified into different types, based on information obtained from a clock tree of the circuit design. Clock tree primitives contain sufficient information to taxonomize the clocks into their respective phases and identify which latches are gated latches. In coloring the latches, gated latches are replaced in the circuit design with a free running clock, a multiplexor, and a sequence of L1 to Ln latches to provide a feedback path via the data path. This allows the gated latch to be phase abstracted without losing the “gated” functionality of the gated latch in the resulting trace. Once the latches are colored in this way, phase abstraction is performed on the colored circuit design. The phase abstracted netlist is then subjected to verification and a trace is produced. The coloring information of the original circuit, plus information as to the exact nature of the phase abstraction performed, is then used to transform the phase abstracted trace to one which resembles a trace of the circuit without phase abstraction.
摘要:
An apparatus and method for automated use of phase abstraction for enhanced verification of circuit designs is provided. With the apparatus and method, latches are “colored,” i.e. classified into different types, based on information obtained from a clock tree of the circuit design. Clock tree primitives contain sufficient information to taxonomize the clocks into their respective phases and identify which latches are gated latches. In coloring the latches, gated latches are replaced in the circuit design with a free running clock, a multiplexor, and a sequence of L1 to Ln latches to provide a feedback path via the data path. This allows the gated latch to be phase abstracted without losing the “gated” functionality of the gated latch in the resulting trace. Once the latches are colored in this way, phase abstraction is performed on the colored circuit design. The phase abstracted netlist is then subjected to verification and a trace is produced. The coloring information of the original circuit, plus information as to the exact nature of the phase abstraction performed, is then used to transform the phase abstracted trace to one which resembles a trace of the circuit without phase abstraction.
摘要:
An apparatus and method for automated use of phase abstraction for enhanced verification of circuit designs is provided. With the apparatus and method, latches are “colored,” i.e. classified into different types, based on information obtained from a clock tree of the circuit design. Clock tree primitives contain sufficient information to taxonomize the clocks into their respective phases and identify which latches are gated latches. In coloring the latches, gated latches are replaced in the circuit design with a free running clock, a multiplexor, and a sequence of L1 to Ln latches to provide a feedback path via the data path. This allows the gated latch to be phase abstracted without losing the “gated” functionality of the gated latch in the resulting trace. Once the latches are colored in this way, phase abstraction is performed on the colored circuit design. The phase abstracted netlist is then subjected to verification and a trace is produced. The coloring information of the original circuit, plus information as to the exact nature of the phase abstraction performed, is then used to transform the phase abstracted trace to one which resembles a trace of the circuit without phase abstraction.
摘要:
A design verification system includes a first verification engine to model the operation of a first design of an integrated circuit to obtain verification results including the model's adherence to a property during N time steps of its operation, proofs that one or more verification targets can be reached, and verification coverage results for targets that are not reached. A correspondence engine determines the functional correspondence between the first design and a second design of the integrated circuit. Functional correspondence, if demonstrated, enables reuse of the first engine's verification results to reduce resources expended during subsequent analysis of the second design. The correspondence determination may be simplified using a composite model of the integrated circuit having “implies” logic in lieu of “EXOR” logic. The implies logic indicates conditions in which a node in the second design achieves a state that is contrary to the verification results for the first design.
摘要:
A method, system and computer program product for reducing XOR/XNOR subexpressions in structural design representations are disclosed. The method includes receiving an initial design, in which the initial design represents an electronic circuit containing an XOR gate. A first simplification mode for the initial design is selected from a set of applicable simplification modes, wherein the first simplification mode is an XOR/XNOR simplification mode, and a simplification of the initial design is performed according to the first simplification mode to generate a reduced design containing a reduced number of XOR gates. Whether a size of the reduced design is less than a size of the initial design is determined, and, in response to determining that the size of the reduced design is less than a the size of the initial design, the initial design is replaced with the reduced design.
摘要:
A method, system and computer program product for reducing subexpressions in structural design representations containing AND and OR gates are disclosed. The method comprises receiving an initial design, in which the initial design represents an electronic circuit, containing an AND gate. A first simplification mode for the initial design from a set of applicable simplification modes is selected, wherein said simplification mode is an AND/OR simplification mode, and a simplification of the initial design according to the first simplification mode is performed to generate a reduced design. Whether a size of the reduced design is less than a size of the initial design is determined and, in response to determining that the size of the reduced design is less than the size of the initial design, the initial design is replaced with the reduced design.
摘要:
A method, system and computer program product for reducing subexpressions in structural design representations containing AND and OR gates are disclosed. The method comprises receiving an initial design, in which the initial design represents an electronic circuit, containing an AND gate. A first simplification mode for the initial design from a set of applicable simplification modes is selected, wherein said simplification mode is an AND/OR simplification mode, and a simplification of the initial design according to the first simplification mode is performed to generate a reduced design. Whether a size of the reduced design is less than a size of the initial design is determined and, in response to determining that the size of the reduced design is less than the size of the initial design, the initial design is replaced with the reduced design.
摘要:
An incremental verification method includes eliminating verification constraints from a first netlist and using the resulting netlist to create a constraint-free composite netlist suitable for determining equivalence between the first netlist and a second netlist of a design. Eliminating a constraint from a netlist may include adding a modified constraint net where the modified constraint net is FALSE for all cycles after any cycle in which the original constraint is FALSE. The method may include, instead of eliminating constraints, determining that the verification result is a target-not-asserted result and that the second netlist constraints are a superset of the first netlist constraints or that the verification result is a target-asserted result and that the first netlist constraints are a superset of the second netlist constraints. In either case, the method may include creating the composite netlist by importing all of the original constraints into the composite netlist.
摘要:
A method, system and computer program product for performing verification of an electronic design is disclosed. The method includes receiving a design, wherein the design includes a first target set and a first register set including one or more registers. A structural product extraction is formed from one or more targets from the first target set and the structural product extraction is recursed for one or more next-state functions of a subset of the one or more registers. A sum-of-products form is recursed from the structural product extraction for one or more next-state functions of a subset of the one or more registers and a product-of-sums form of a result of the second recursing is decomposed to generate a decomposition of the product-of-sums form. The decomposition of the product-of-sums form is synthesized into a second target set and a subset of the second target set to recursively decompose is chosen. In response to the subset of the second target set being nonempty, the first target set is recursively decomposed and, in response to the second target set being empty, verification is applied to the second target set.
摘要:
A method, system and computer program product for performing verification of an electronic design is disclosed. The method includes receiving a design, including a first target set, a primary input set, and a first register set comprising one or more registers. A binary decision diagram analysis of the design is generated. A recursive extraction of one or more next states of selected registers is generated using the binary decision diagram analysis of the first target set and the primary input set. The recursive extraction is decomposed to generate a second target set, and the second target set is verified.