Abstract:
A random number generator includes a fairness checker and correction module that ensures that a complete random sequence within a predetermined period of time will be output by the random number generator.
Abstract:
A method, system, and computer program product for verification of a state transition machine (STM) are provided in the illustrative embodiments. The STM representing the operation of a circuit configured to perform a computation is received. A segment of the STM is selected from a set of segments of the STM. A set of properties of the segment is determined. The set of properties is translated into a hardware description to form a translation. The segment is verified by verifying whether all relationships between a pre-condition and a post condition in the translation hold true for any set of inputs and any initial state of a hardware design under test. A verification result for the segment is generated. Verification results for each segment in the set of segments are combined to generate a verification result for the STM.
Abstract:
A method, system, and computer program product for improved model checking for verification of a state transition machine (STM) are provided. A hardware design under test and a property to be verified are received. A level (k) of induction proof needed for the verification is determined. A circuit representation of the property using the hardware design under test for k base cases is configured for checking that the circuit representation holds true for the property for each of the k base cases, and for testing an induction without hypothesis by testing whether the property holds true after k clock cycles starting from a randomized state, where induction without hypothesis is performed by omitting a test whether the property holds true for the next cycle after the property holds for k successive cycles. The induction proof of the property using the hardware design under test by induction without hypothesis is produced.
Abstract:
A mechanism is provide for formally verifying random priority-based arbiters. A determination is made as to whether a random priority-based arbiter is blocking one of a set of output ports or a set of input ports. Responsive to the first predetermined time period expiring before the processor determines whether the random priority-based arbiter is blocking, a determination is made as to whether the random priority-based arbiter is blocking one of the set of output ports or the set of input ports within a second predetermined time period using the random seed and at least one of property strengthening or underapproximation. Responsive to the processor determining that the random priority-based arbiter satisfies a non-blocking specification such that not one of the set of output ports or the set of input ports is blocked within the second predetermined time period, the random priority-based arbiter is validated as satisfying the non-blocking specification.
Abstract:
A method of verifying a software system includes receiving a description of a software system described utilizing a high-level modeling language, and responsive thereto, parsing the description and constructing an abstract syntax graph. The abstract syntax graph is transformed into a sequential logic representation of the software system. The sequential logic representation is formed by reference to a Hardware Description Language (HDL) library. Then, the sequential logic representation is transformed into a gate-level sequential logic representation. Following the transforming, the software system is verified based upon the gate-level sequential logic representation. Following verification, results of verification of the software system are output.
Abstract:
Methods and systems are provided for sequential netlist reduction through trace-containment for a circuitry design netlist by first identifying a cut of the netlist and enumerating a set of mismatch traces. Perform time-bounded unfolding of a cofactored version of the cut to reflect the sequential cofactor for a specific input i and temporal uncorrelation constraints for the set of inputs ‘J’. Determine whether there is trace containment by performing equivalence checking with respect to the cut of the netlist under temporal uncorrelation constraints for the set of inputs ‘J’. In response to detecting trace containment, simplify the netlist by merging the input ‘i’ to a constant.
Abstract:
A method, system and computer program product for building decision diagrams efficiently in a structural network representation of a digital circuit using a dynamic resource constrained and interleaved depth-first-search and modified breadth-first-search schedule is disclosed. The method includes setting a first size limit for a first set of one or more m-ary decision representations describing a logic function and setting a second size limit for a second set of one or more m-ary decision representations describing a logic function. The first set of m-ary decision representations of the logic function is then built with one of the set of a depth-first technique or a breadth-first technique until the first size limit is reached, and a second set of m-ary decision representations of the logic function is built with the other technique until the second size limit is reached. In response to determining that a union of first set and the second set of m-ary decision representations do not describe the logic function, the first and second size limits are increased, and the steps of building the first and second set are repeated. In response to determining that the union of the first set of m-ary decision representations and the second set of m-ary decision representations describe the logic function, the union is reported.
Abstract:
Methods and systems are provided for producing more efficient digital circuitry designs by identifying trace-containment for a sequential circuitry design netlist through the use of constraint-based uncorrelated equivalence checking. A set of candidate input netlist sets n1 and n2 is first uncorrelated and then submitted for equivalence checking. Mismatches discovered during the equivalence checking are avoided by imposing constraint to the input set until discovering an equivalency relationship between the input sets n1 and n2.
Abstract:
A method, system and computer program product for verifying that a design conforms to a desired property is disclosed. The method comprises receiving a design, a first initial state of the design, and a property for verification with respect to the design. The first initial state of the design is expanded to create a superset of the first initial state containing one or more states reachable from the first initial state of the design. A superset is synthesized to define a second initial state of the design. Application of the superset to the design is overapproximated through cutpoint insertion into the superset to obtain a modified superset, and the property is verified with reference to the modified superset.
Abstract:
A method of verifying a digital design is disclosed. The method comprises generating a reference model for a first digital design and creating an operational model for a second digital design, wherein the first digital design and the second digital design are intended to have a same logical function. A plurality of testcase types are then created by constraining one or more internal signals, and one or more test scripts representing the plurality of testcase types are produced. The method also includes verifying the second digital design with a testing simulation program by comparing results of the test scripts from the operational model and the reference model.