摘要:
A method and system for implementing secure communications between a plurality of devices are provided. The method and system generally include the provision of at least one common encryption parameter to each of the plurality of devices, as well as an identification of the plurality of devices to one another. This information can be maintained and shared by interaction of the plurality of devices with a designated server device. In this way, a secure, point-to-point connection between at least two of the plurality of devices can be established.
摘要:
Header compression system for compressing the header of the data packets of a flow transmitted from an ingress node to an egress node through a data transmission network comprising template creating means, in both ingress node and egress node, adapted for creating the same compression template from a predetermined number of uncompressed data packets at the beginning of the flow respectively transmitted by the ingress node and received by the egress node, and header compression means, in the ingress node, adapted for compressing the header of each packet following the predetermined number of uncompressed data packets before transmitting it through the data transmission network, the compression being achieved by using the compression template.
摘要:
Certain exemplary embodiments provide a method for converting data packets based upon IPv4 protocol into data packets based upon IPv6 protocol, said method comprising converting any data packet based upon the IPv4 protocol into a data packet based upon the IPv6 protocol before transmitting it to an IP switched network using information provided by an external server, and converting any data packet based upon the IPv6 protocol provided by said IP switched network into a data packet based upon the IPv4 protocol before transmitting it to a first or second workstation.
摘要:
Certain exemplary embodiments provide a method for converting data packets based upon IPv4 protocol into data packets based upon IPv6 protocol, said method comprising converting any data packet based upon the IPv4 protocol into a data packet based upon the IPv6 protocol before transmitting it to an IP switched network using information provided by an external server, and converting any data packet based upon the IPv6 protocol provided by said IP switched network into a data packet based upon the IPv4 protocol before transmitting it to a first or second workstation.
摘要:
A method and system for implementing secure network communications between a first device and a second device, at least one of the devices communicating with the other device via a firewall device, are provided. The method and system may include obtaining an encryption parameter that is shared by the first device, second device and firewall device. A data packet sent by the first device may then be copied within the firewall device, so that decryption of the copy of the data packet within a portion of the firewall device may take place. In particular, the portion of the firewall device in which decryption takes place is defined such that contents of the portion are inaccessible to an operator of the firewall device. Thus, scanning of the decrypted copy of the data packet for compliance with a predetermined criterion may take place within the firewall device, without an operator of the firewall device having access to the contents of the data packet to be transmitted. Thereafter, the original data packet can be forwarded to its originally intended recipient.
摘要:
A method and system for implementing secure network communications between a first device and a second device, at least one of the devices communicating with the other device via a firewall device, are provided. The method and system may include obtaining an encryption parameter that is shared by the first device, second device and firewall device. A data packet sent by the first device may then be copied within the firewall device, so that decryption of the copy of the data packet within a portion of the firewall device may take place. In particular, the portion of the firewall device in which decryption takes place is defined such that contents of the portion are inaccessible to an operator of the firewall device. Thus, scanning of the decrypted copy of the data packet for compliance with a predetermined criterion may take place within the firewall device, without an operator of the firewall device having access to the contents of the data packet to be transmitted. Thereafter, the original data packet can be forwarded to its originally intended recipient.
摘要:
A method and system of transmitting data frames from a sending unit (10) to a receiving unit (12) in a data transmission network comprising at least a backbone (14) wherein the data are transmitted over high speed links enabling long Maximum Transmission Units (MTU) between an ingress node (18) connected to the sending unit by a first access link (16) and an egress node (22) connected to the receiving node by a second access link (20), with at least one of the first and second access links being a low speed access link requiring the data frames to be segmented into short MTUs between the sending unit and the ingress node and between the egress node and the receiving unit. A plurality of consecutive segmented data frames (28) belonging to the same flow of data transmitted from the sending unit to the ingress node are assembled by the ingress node into an assembled data frame (30) corresponding to the long MTU, the assembled data frame is transmitted over the backbone from the ingress node to the egress node at a high speed authorized by the backbone links, and the assembled data frame is de-assembled into consecutive segmented data frames (32) corresponding to the short MTUs by the egress node before being transmitted to the receiving unit.
摘要:
The present invention relates to a system and method for dynamically adjusting the bandwidth of a continuous bit rate virtual path connection established between a source node and a destination node within a packet or cell switching network comprising a plurality of nodes interconnected with transmission links. In the network, a bandwidth management server having access to information concerning network nodes and transmission links is defined. This server is informed each time a virtual path connection or a virtual channel connection is established on the network with an indication concerning the initial bandwidth reserved for said connection. The server detects and shares, on a continuous or periodical mode, the bandwidth which is available on transmission links among the bandwidth adjustable continuous bit rate virtual path connections and determines for each connection a new bandwidth. The source node is informed each time a new bandwidth is computed. It adjusts the bandwidth of the corresponding bandwidth adjustable continuous bit rate virtual path connection accordingly.
摘要:
A packet scheduling system for use in a switching node of a high speed packet switching network. Incoming packets are enqueued in connection queues. Each connection is classified as red (exceeding traffic profile) or green (within traffic profile). QOS priority is also identified for each connection. Packets are dequeued for transmission as a function of priority class and connection class. Higher priority class connections have priority over lower priority class connections. Within a given priority class of connections, green connections have priority over red connections. Round robin scheduling is used for packets from connections in the same priority and connection class. In addition, a dynamic priority coupling mechanism is provided to prevent red higher priority traffic from blocking green lower priority traffic.
摘要:
Adaptive bandwidth allocation for Non-Reserved traffic over high speed transmission links of a digital network is operated through regulation of data packet transfers over network nodes/ports including input/output adapters connected through a switching device. A network node is assigned with a Control Point computing devise (CP) storing a Topology Data Base containing an image of the network. This Data Base is periodically and at call set up updated by Topology Data Base Update messages (TDUs) including an Explicit Rate parameter for link l indicating the current available bandwidth on link l, and a parameter NNRl indicating the number of Non-Reserved connections on link l. This information are used within each Adapter to periodically regulate the transmission bandwidth assigned to each Non-Reserved traffic connection within the network. To that end, each adapter is provided with an Access Control Function device for each attached connection (data source) and a Connection Agent (CA) getting, on request, required current link informations from the attached Topology Data Base.