摘要:
A ladle (1) comprising a main portion (5), an outlet (3) and an inductor assembly (2) fitted onto the main portion. The main portion comprises a cavity (13) defined by a refractory lining, provided with at least one opening (21) and shaped so that no pockets of molten metal remain after pouring. Consequently, the metal flows more readily, and hot deslagging and metal temperature measurement are made easier. The ladle is useful for maintaining the temperature of high melting point metals such as steel or superalloys for processes requiring metal sampling.
摘要:
A device for inductively heating flat metal objects, with at least one pair of induction coils which form a gap through which the object is moved. The induction coils have an iron core made up of transformer stampings with grooves in which current conductors are arranged. The iron cores of at least one inductor coil have grooves which run in a zig-zag or undulating fashion along the direction of motion of the object being heated. The maximum angle the grooves make with the direction of movement of the object is 60.degree., and the current conductors are disposed in the grooves so as to follow the zig-zags or undulations thereof. The inductor coils of at least one inductor-coil pair include several side-by-side conductors which are arranged so as to carry current in the same direction along the coil. At least some of the current conductors are arranged for selective independent electrical connection to a source of electrical energy.
摘要:
For optimum induction heating of metallic strips (1) of differing widths—particularly in the edge region—one multicoil transverse field inductor is positioned both above and below the strip (1) to be heated, whose coil axes are positioned vertically to the strip surface. In this case, each inductor comprises at least one inductor segment (2, 3; 7; 15; 17), which is constructed as a coil composite of multiple approximately rectangular coils (8, 9, 10; 16; 18) which extend predominantly transversely to the transport direction of the strip (1), the coils (8, 9, 10; 16; 18) having different, stepped transverse extensions and the coil having the highest transverse extension extending at most up to the lateral edges of the widest strip and the coil having the lowest transverse extension extending at most up to the lateral edges of the narrowest strip. Each inductor segment (2, 3; 7; 15; 17) is connected to a circuit for defined clocking of its coils (8, 9, 10; 16; 18), and each inductor segment (3; 7; 15; 17) below the strip is assigned an identical inductor segment (2; 7; 15; 17) above the strip. Through the device according to the present invention, overheating of the edges of metal strips (1) is prevented during induction heating—independently of the strip width.
摘要:
In the operation of a hot metallizing furnace for lengths of metal, in particular metal strip, in which the length of metal to be coated is passed from above through the upper zone of a smelt of a coating material located in a smelt container, the smelt container can be heated by means of an induction coil made up of partial coils arranged axially on top of one another. During hot metallizing the upper partial coil(s) is/are connected to a medium frequency source of electricity in a single-phase manner. For the removal of the deposits which accumulate in the lower area of the smelt vessel, the lower partial coil(s) is/are connected to a three-phase current mains frequency source of electricity. The agitated deposits are then removed from the smelt using a collecting vessel.
摘要:
In a process for the operation of coreless induction melting and/or holding furnaces--in which there results in the melting operation at a relatively high induction frequency (as compared to the mains frequency) a slight stirring motion in the melt, but a high degree of effectiveness for the melting process, and in the melting and holding operation at a correspondingly lower induction frequency there results a greater stirring motion in the melt, but a lower degree of effectiveness for the melting process--it is provided that at least one capacitor switched in parallel to the induction coil(s) is provided, which capacitor(s), together with the induction coil(s), form a resonant circuit; and that in the transition from the melting operation with slight stirring motion in the melt to the melting or holding operation with greater stirring motion, or in the reverse transition, the capacitor capacitance and/or the inductance present in the resonant circuit is increased, or as the case may be, decreased.
摘要:
A device for inductive cross-field heating of flat metallic goods has at least one pair of inductors having each one iron core provided with a groove for receiving a lead that extends in the transport direction. The grooves and leads of both inductors of a pair of inductors are mirror symmetrical and the leads of each inductor form two independently switchable lead systems. Each lead system has sections that extend substantially in the transport direction of the metallic goods and whose center lines extend symmetrically to a central axis of the inductor parallel to the transport direction. The individual poles of the lead systems consist of maximum two leads. Each pole of a lead system is arranged between the poles of the other lead system. A uniform temperature distribution in the goods to be heated is achieved by synchronizing the offsetting in time the moments when both lead systems are switched. The substantially symmetrical design of the inductor causes similar conditions to prevail at both edges of the goods even when the goods have various widths. By reducing the power applied by the lead system, which acts essentially on both edges of the metallic goods, the edges may thus be prevented from overheating.
摘要:
Described is a low-loss induction coil for heating and/or melting metallic materials, the coil having windings formed by lengths of hollow tubing carrying a fluid coolant. In the central zone of the induction coil, the current is carried by hollow conductors made of copper which at the same time form the hollow tubing. Fitted at least in the windings at one end of the coil is a current-carrying element in the form of at least one braid whose individual conductors are insulated from each other, while remaining windings are designed as hollow conductors connected to the current-carrying element. The use of braids as the current carrier leads, at the end of the coil, to a reduction in eddy-current losses caused by transverse magnetic fields, while the use of hollow conductors in the rest of the coil results in the mean distance between the current flux and the metallic material being heated being kept at the minimum and losses due to this distance thus kept low.