摘要:
An evaporator (168) in a vapor compression system (14) (168) includes a shell (76), a first tube bundle (78); a hood (86); a distributor (80); a first supply line (142); a second supply line (144); a valve (122) positioned in the second supply line (144); and a sensor (150). The distributor (80) is positioned above the first tube bundle (78). The hood (88) covers the first tube bundle (78). The first supply line (142) is connected to the distributor (80) and an end of the second supply line (144) is positioned near the hood (88). The sensor (150) is configured and positioned to sense a level of liquid refrigerant (82) in the shell. The valve (122) regulates flow in the second supply line in response to the level of liquid refrigerant (82) from the sensor (150).
摘要:
An heat exchanger for use in a vapor compression system is disclosed and includes a shell, a first tube bundle, a hood and a distributor. The first tube bundle includes a plurality of tubes extending substantially horizontally in the shell. The hood covers the first tube bundle. The distributor is configured and positioned to distribute fluid onto at least one tube of the plurality of tubes.
摘要:
An evaporator (168) in a vapor compression system (14) (168) includes a shell (76), a first tube bundle (78); a hood (86); a distributor (80); a first supply line (142); a second supply line (144); a valve (122) positioned in the second supply line (144); and a sensor (150). The distributor (80) is positioned above the first tube bundle (78). The hood (88) covers the first tube bundle (78). The first supply line (142) is connected to the distributor (80) and an end of the second supply line (144) is positioned near the hood (88). The sensor (150) is configured and positioned to sense a level of liquid refrigerant (82) in the shell. The valve (122) regulates flow in the second supply line in response to the level of liquid refrigerant (82) from the sensor (150).
摘要:
An heat exchanger for use in a vapor compression system is disclosed and includes a shell, a first tube bundle, a hood and a distributor. The first tube bundle includes a plurality of tubes extending substantially horizontally in the shell. The hood covers the first tube bundle. The distributor is configured and positioned to distribute fluid onto at least one tube of the plurality of tubes.
摘要:
An heat exchanger for use in a vapor compression system is disclosed and includes a shell, a first tube bundle, a hood and a distributor. The first tube bundle includes a plurality of tubes extending substantially horizontally in the shell. The hood covers the first tube bundle. The distributor is configured and positioned to distribute fluid onto at least one tube of the plurality of tubes.
摘要:
A vapor compression system including a heat exchanger and a heat exchanger for use in a vapor compression system, the heat exchanger including a shell (76), a hood (86), a tube bundle (78), a distributor (80), and a passageway are disclosed. The shell (76) can include an outlet (104) configured to permit passage of vapor (96) from the shell (76), the hood (86) can be configured and positioned to cover the tube bundle (78) and the distributor (80), the tube bundle (78) can extend substantially horizontally in the shell (76), the distributor (80) can be configured to apply a fluid to the tube bundle (78), and the passageway can be configured and positioned to receive vapor (96) and provide a flow path for the vapor (96) to the outlet (104).
摘要:
A pressure-staged absorption refrigeration apparatus having a direct-fired combustion chamber is provided. The refrigeration apparatus includes an evaporator and an absorber operatively connected to the evaporator. A plurality of generators is provided, each generator operatively connected, directly or indirectly, to the absorber. Each generator receives one of a plurality of absorption solution streams and discharges another of the absorption solution streams. Each generator also discharges one of a plurality of refrigerant vapor streams. One generator operates at a first temperature, and one generator operates at a sub-ambient pressure. A plurality of condensers is also provided, each condenser operatively connected to one of the generators from which the condenser receives one of the refrigerant vapor streams. Furthermore, each condenser is operatively connected to the evaporator and discharges one of a plurality of refrigerant liquid streams. A direct-fired combustion chamber for generating combustion gases is provided. The combustion chamber is cooled by one of the absorption solution streams. A piping arrangement transfers heat stored in the combustion gases to the absorption solution stream in the generator operating at the first temperature. A pressure equalization device is operatively connected to the absorption solution stream cooling the combustion chamber to maintain the absorption solution stream cooling the combustion chamber at pressure less than ambient.
摘要:
Systems for limiting pressure differences in dual compressor chillers are provided. To achieve the efficiency benefits of series flow chillers within a single unit, an evaporator and/or a condenser may be partitioned into separate chambers by a baffle. Process fluid may then flow through one chamber of the evaporator and/or condenser prior to entering the other. This configuration creates a pressure differential between chambers which may reduce compressor head and result in greater chiller efficiency. However, to maintain the structural integrity of the evaporator and/or condenser baffle, a system for limiting this pressure differential may be employed. This system may include an evaporator pressure equalization valve, a common liquid line, or an equalizing line between separate liquid lines. Methods of operating dual compressor chillers using these systems are also provided.
摘要:
A refrigeration system that utilizes both an air-cooled heat exchanger and a cooling tower to cool refrigerant prior to the refrigerant being provided to the evaporator. This multi-stage cooling permits the refrigeration system to operate with improved efficiency, while reducing the amount of water lost to evaporative cooling in the cooling tower, since the thermal load handled by the cooling tower is reduced by the air-cooled heat exchanger. This in turn means less water is required to replace water lost to evaporative cooling. In arid regions or regions of low water quality, both efficiency increase and reduction of water lost to evaporative cooling are important improvements.
摘要:
A triple-effect absorption refrigeration system is provided with an evaporator and an absorber operatively connected to receive a refrigerant vapor discharged from the evaporator. First, second, and third generators are operatively connected to receive an input absorption solution discharged from the absorber and to discharge an output absorption solution for return to the absorber. These first, second and third generators each discharge a refrigerant vapor. A heat source for heating the input absorption solution in the third generator to a first temperature is provided. The heat source separates the input absorption solution in the third generator into the refrigerant vapor and the output absorption solution. The heat source further generates energy laden combustion products. First, second, and third condensers are operatively connected to receive the refrigerant vapor discharged from the first, second and third generators, respectively, and to condense the refrigerant vapor into a refrigerant liquid. The second and third condensers are operatively connected to transfer the refrigerant liquid to the first and second condensers, respectively, while the first condenser is operatively connected to transfer refrigerant liquid to the evaporator. The second and third condensers are also operatively connected to exchange heat with the first and second generators, respectively, thereby separating the input absorption solution in the first and second generators, respectively, into the refrigerant vapor and the output absorption solution. A combustion products-to-solution heat exchanger is operatively connected to transfer heat from the combustion products to the input absorption solution.