Abstract:
Methods and apparatus for segmenting image data into one or more windows may collect statistics on white regions, otherwise called enclosed white windows. Such enclosed white windows may be merged with one of a surrounding nonwhite window and a background based upon the enclosed white window's size, edge characteristics, cumulative statistics and/or at least one control parameter. Such merging may be accomplished at a time subsequent to enclosing the white region or dynamically while the window is being assembled scanline-by-scanline.
Abstract:
A printing system for rendering marks on a recording medium receives a multi-level grey scale pixel value representing a pixel having a first resolution. A screening circuit generates a screened multi-level grey scale pixel value equal to (G.sub.L -V.sub.i)+(S.sub.i -Th)*Dmp.sub.Vi *Mod.sub.Eff wherein G.sub.L is the maximum grey level value of the pixel, V.sub.i is equal to the multi-level grey scale pixel value of the first resolution, S.sub.i is equal to a screen value corresponding to a position of the pixel, Th is the threshold value, Dmp.sub.Vi is a video dependent dampening factor, and Mod.sub.Eff is a modulation multiplication factor. An interpolator converts the screened multi-level grey scale pixel value to a second resolution, the second resolution being higher than the first resolution, and a binarization circuit binarizes the converted multi-level grey scale pixel value so as to output a binary signal and an error value, the error value having a resolution equal to the first resolution. The error value is diffused to multi-level grey scale pixel values corresponding to pixels adjacent to the pixel having the first resolution, and the binary signal is converted into a mark on the recording medium.
Abstract:
A method and system implements a redistributive characteristic into an error diffusion process. A grey level value representing a pixel is received. A threshold circuit thresholds the received grey level value and generates an error value as a result of the threshold. A portion of the error value is diffused to adjacent pixels on a next scanline. All the error for a single pixel on the next scanline is accumulated. Since this accumulated error has a greater number of bits than can be stored in a buffer, a portion of the accumulated error is truncated and redistributed to a down stream pixel for inclusion in the downstream pixel's error accumulation process. The grey level value has a first resolution which corresponds to an original input resolution. In a high addressabilty environment, the received grey level value is interpolated to subpixel grey level values before thresholding.
Abstract:
Method and apparatus for processing image pixels to determine the presence of high frequency halftone images. Prior to auto correlation, each pixel in the image is examined to determine whether it is a local area maximum or minimum. A binary image function composed of the image local area maximum or minimums is made available for auto correlation. The presence of peaks at shifts indicative of predetermined halftone image frequencies is detected, and an output signal indicative of the presence or absence of peaks at the predetermined halftone image frequencies is provided. The arrangement is combined with a run length encoder to reduce false microdetection results.
Abstract:
A method of reproducing gray levels on a device capable of displaying a limited number of gray levels. A system is disclosed for partitioning an image composed of pixels into halftone cells, each having multiple pixels. Each input pixel value within a halftone cell is translated into an output pixel value in accordance with a set of threshold arrays.
Abstract:
A device (200) for manufacturing a color printing includes a printhead (10), a device (300) for additional printing of the color printing, and a printhead motion and jetting control (100). The device (300) also provided herein includes a printhead identification unit (80) and the host processor (90). The printhead identification unit is configured for identifying type of the N jets, calculating the numbers of the defective jets, and then outputting measurement information of the N jets and the defective jets. The host processor is configured for receiving the measurement information from the printhead identification unit and outputting movement instructions of the printhead with a starting position of the printhead in the first printing process.
Abstract:
A method and apparatus for segmenting image data into windows and for classifying the windows as typical image types includes making two passes through the image data. The method includes a step of making a first pass through the image data to identify windows and to record the beginning points and image types of each of the windows, and a step of making a second pass through the image data to label each of the pixels as a particular image type. The invention also includes a macro-detection method and apparatus for separating a scanline of image data into edges and image runs and for classifying each of the edges and image runs as standard image types. In the macro-detection method, image runs and edges are classified based on micro-detection results and based on image types of adjacent image runs.
Abstract:
A system and method classify a pixel of image data as one of a plurality of image types. A first image characteristic value for the pixel, a second image characteristic value for the pixel, a third image characteristic value for the pixel, and a fourth image characteristic for the pixel is determined. Some of these determinations may be resolution dependent. The values from these determination are utilized in assigning an image type classification to the pixel. Moreover, if at least one of the image characteristic values is greater than a predetermined threshold value the pixel is classified as a halftone peak value. The system includes a plurality of microclassifiers for determining a distinct image characteristic value of the pixel; a plurality of macroreduction circuits connected to the plurality of microclassifiers for performing further higher level operations upon the distinct image characteristic values of the pixel to produce reduced values; and a classification circuit to classify the pixel as an image type based on the reduced values from the macroreduction circuits. The system also includes a circuit to detect flat peaks without detecting multiple peaks and a rectangular blur filtering system.
Abstract:
A method and apparatus for segmenting image data into windows and for classifying the windows as typical image types includes making two passes through the image data. The method includes a step of making a first pass through the image data to identify windows and to record the beginning points and image types of each of the windows, and a step of making a second pass through the image data to label each of the pixels as a particular image type. The invention also includes a macro-detection method and apparatus for separating a scanline of image data into edges and image runs and for classifying each of the edges and image runs as standard image types. In the macro-detection method, image runs and edges are classified based on micro-detection results and based on image types of adjacent image runs.
Abstract:
An error diffusion process adds an error value to an input grey image value to produce a modified input grey image value before comparing the modified input grey image value with a predetermined threshold value. A rendering value and error is generated based on the comparison. An error equal to the modified input grey value is generated when the modified input grey value is less than the predetermined threshold value, and an error equal to the modified input grey value minus an effective spot area value is generated when the modified input grey value is equal to or greater than the predetermined threshold value. The effective spot area value is retrieved from a look-up table having a plurality of effective spot area values based on the input grey image value. The effective spot area values is created from a process of scanning a set of grey test patches corresponding to a set of known grey input values and generating image data therefrom, printing a set of grey patches based on the generated image data, measuring a reflectance of each grey test patch to generate a plurality of output grey values, one output grey value for each test patch and corresponding known grey input value, generating a tonal reproduction curve from the set of known grey input values and corresponding output grey values, calculating a plurality of effective spot area values, each effective spot area value being a result of dividing one output grey value by the corresponding known grey input value, and storing the plurality of effective spot area values as a function of the output grey value. The generated error is fractionalized and diffused to neighboring pixels.