摘要:
In exemplary embodiments, a robot cleaner with improved safety features comprises a driving part for movably supporting a cleaner body and supplying a driving force for operating the cleaner body; a suction part mounted on the cleaner body to draw in dust from a surface being cleaned; a body sensor mounted on the cleaner body to perceive any approach or contact of at least a part of human body or pet; and a control part for turning on and off the driving part according to a signal detected by the body sensor.
摘要:
A mobile robot measures a rotation angle using information from an image photographed by a vision camera. A mobile robot system comprises a main body of the robot, a driving part for driving a plurality of wheels; a vision camera mounted on a main body thereof to photograph an upper image which is perpendicular to a traveling direction; and a controller for calculating a rotation angle using polar-mapping image data obtained by polar-mapping a ceiling image, photographed by the vision camera, with respect to a ceiling of a working area. The controller drives the driving part using a calculated rotation angle. The rotation angle is measured by the vision cameras and the rotation angle can be used to compensate the working path, without having to provide expensive devices such as an accelerometer or a gyroscope, thereby saving manufacturing cost.
摘要:
A robot vacuum cleaner that comprises a driving unit moving a body on a cleaning surface; a cleaning area detecting unit detecting an area of the cleaning surface; and a central processing unit calculating a spiral cleaning travel pattern corresponding to a shape of each cleaning area based on the information detected by the cleaning area detecting unit to output a cleaning travel signal corresponding the calculated cleaning travel pattern to the driving unit. The cleaning travel pattern can be variable applied depending on a shape of each cleaning area such that the coverage ratio of the cleaning area can increase.
摘要:
A robot vacuum cleaner has a driving unit moving a cleaner body on a cleaning surface; a distance detecting unit detecting a distance of travel by the driving unit; an obstacle detecting unit detecting an obstacle near the cleaner body; and a central processing unit moving the cleaner body to a location a certain distance away from the obstacle according to a cleaning travel pattern when the obstacle detecting unit detects an obstacle, and variably applying the distance as the obstacle is detected and outputting a travel signal to the driving unit, thereby evenly covering the cleaning area.
摘要:
A robot cleaner that includes a driving unit for driving a plurality of wheels, a transmitter/receiver for communicating with an external charger, and a controller for controlling the driving unit. The controller controls the transmitter/receiver to communicate with the external charger while traveling an area to be cleaned and stores at least one location of communication in a memory. The controller further controls the driving unit to cause the robot cleaner to travel to the external charger using at least one location of communication.
摘要:
A mobile robot capable of humidifying an entire room. The mobile robot comprises a driving part for movably supporting a body and providing a driving force to move the body, a humidifier disposed on the body; and a controller for controlling the driving part.
摘要:
An automatic cleaning apparatus has a cleaner body having at least one driving wheel, and in certain disclosed embodiments, a vapor spray means installed in the cleaner body for generating water vapor during operation, and spraying the generated water vapor toward a lower part of the cleaner body.
摘要:
A robot control system and a robot control method provide improved user convenience in operating the system. The robot control system includes a wireless IP sharing device, connected with the Internet, for transmitting and receiving an image signal and/or a control signal, a robot running by itself in accordance with a command received through the wireless IP sharing device, and performing a designated job, the robot being installed with a wireless communication module, a portable wireless terminal having a motion sensor, for wirelessly transmitting an operation command to the wireless communication module, or receiving image signal and/or control signal, and a robot server, connected with the Internet, for outputting a control screen of the robot, and the image signal and/or the control signal which is received from the robot, to the portable wireless terminal. The robot is controlled by use of the motion sensor installed at the portable wireless terminal.
摘要:
A system for returning a robot to a charger includes: a homing signal transmitter, including at least first, second, and third signal transmitters, each adapted to be provided at a front side of the charger and to respectively transmit signals which are different from each other in at least one of a code and a transmission distance, and a fourth signal transmitter, adapted to be provided on at least one lateral side of the charger and to transmit a signal which is different from the signals of the first, second, and third transmitters in code; a homing signal receiver provided at the robot and to receive at least one signal transmitted from the homing signal transmitter; and a controller adapted to identify the at least one signal and to control the robot to return to the charger based at least in part on the at least one signal.
摘要:
A robot system includes a supply station. The system further includes: a robot, a robot tank adapted to store a liquid and disposed at the robot; and a supply station configured to supply additional liquid to the tank.