摘要:
A technique will automatically route interconnect of an integrated circuit while taking into consideration current density rules. In an implementation, the technique uses a shape-based approach where a grid is not used. Based on data input including current density and a frequency of each net, the technique will determine the current requirements for each net. In an implementation, the technique forms a Steiner tree for a net, and routs using the Steiner tree. The technique widens nets having greater current requirements; adjacent wiring may be pushed aside to create sufficient space for wider nets.
摘要:
A technique will automatically route interconnect of an integrated circuit. In an implementation, the technique operates on a gridless layout. The technique forms a Steiner tree for a net and routs using the Steiner tree. In a specific embodiment, the technique creates tracks having varying widths.
摘要:
A system of automatically routing interconnect of a integrated circuit design while taking into consideration the parasitic issues of the wiring as it is created. The system will be able to select an appropriate wiring pattern so that signals meet their performance requirements.
摘要:
A system of automatically routing interconnect of a integrated circuit design while taking into consideration the parasitic issues of the wiring as it is created. The system will be able to select an appropriate wiring pattern so that signals meet their performance requirements.
摘要:
A system of automatically routing interconnect of a integrated circuit design while taking into consideration the parasitic issues of the wiring as it is created. The system will be able to select an appropriate wiring pattern so that signals meet their performance requirements.
摘要:
A technique will automatically route interconnect of an integrated circuit while taking into consideration current density rules. In an implementation, the technique uses a shape-based approach where a grid is not used. Based on data input including current density and a frequency of each net, the technique will determine the current requirements for each net. In an implementation, the technique forms a Steiner tree for a net, and routs using the Steiner tree. The technique widens nets having greater current requirements; adjacent wiring may be pushed aside to create sufficient space for wider nets.
摘要:
A technique will automatically route interconnect of an integrated circuit while taking into consideration current density rules. In an implementation, the technique uses a shape-based approach where a grid is not used. Based on data input including current density and a frequency of each net, the technique will determine the current requirements for each net. In an implementation, the technique forms a Steiner tree for a net, and routs using the Steiner tree. The technique widens nets having greater current requirements; adjacent wiring may be pushed aside to create sufficient space for wider nets.
摘要:
A system of automatically routing interconnect of a integrated circuit design while taking into consideration the parasitic issues of the wiring as it is created. The system will be able to select an appropriate wiring pattern so that signals meet their performance requirements.
摘要:
A system automatically routes interconnect of an integrated circuit design using variable width interconnect lines. For example, a first automatically routed interconnect may have a different width from a second automatically routed interconnect. The system will vary the width of the interconnect lines based on certain factors or criteria. These factors include current or power handling, reliability, electromigration, voltage drops, self-heating, optical proximity effects, or other factors, or combinations of these factors. The system may use a gridded or a gridless (or shape-based) approach.
摘要:
A method and technique of routing interconnects of an integrated circuit providing improved routing quality. In an embodiment of the invention, the technique provides linear spine interconnect routing. In memory array blocks, such as in DRAM and SRAM memory designs, connected pins are generally separated by large distances in a first direction and small distances in a second direction, or a spine or channel region. A route area is defined within the spine region. In one embodiment, obstacles in the route area are identified and corresponding forbidden areas are demarcated. The linear spine interconnect is routed in the first direction within the route area while avoiding the forbidden areas. Pins are connected to the spine interconnect by stitching interconnects. Stitching interconnects are generally routed in the second direction.