摘要:
Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
摘要:
Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
摘要:
Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
摘要:
Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
摘要:
Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
摘要:
The invention includes a method for reducing noise in migration of seismic data, particularly advantageous for imaging by simultaneous encoded source reverse-time migration (SS-RTM). One example embodiment includes the steps of obtaining a plurality of initial subsurface images; decomposing each of the initial subsurface images into components; identifying a set of components comprising one of (i) components having at least one substantially similar characteristic across the plurality of initial subsurface images, and (ii) components having substantially dissimilar characteristics across the plurality of initial subsurface images; and generating an enhanced subsurface image using the identified set of components. For SS-RTM, each of the initial subsurface images is generated by migrating several sources simultaneously using a unique random set of encoding functions. Another embodiment of the invention uses SS-RTM for velocity model building.
摘要:
Provided is a method for processing seismic data. One exemplary embodiment includes the steps of obtaining a plurality of initial subsurface images; decomposing each of the initial subsurface images into components; identifying a set of components comprising one of (i) components having at least one substantially similar characteristic across the plurality of initial subsurface images, and (ii) components having substantially dissimilar characteristics across the plurality of initial subsurface images; and generating an enhanced subsurface image using the identified set of components. Each of the initial subsurface images is generated using a unique random set of encoding functions.
摘要:
The invention includes a method for reducing noise in migration of seismic data, particularly advantageous for imaging by simultaneous encoded source reverse-time migration (SS-RTM). One example embodiment includes the steps of obtaining a plurality of initial subsurface images; decomposing each of the initial subsurface images into components; identifying a set of components comprising one of (i) components having at least one substantially similar characteristic across the plurality of initial subsurface images, and (ii) components having substantially dissimilar characteristics across the plurality of initial subsurface images; and generating an enhanced subsurface image using the identified set of components. For SS-RTM, each of the initial subsurface images is generated by migrating several sources simultaneously using a unique random set of encoding functions. Another embodiment of the invention uses SS-RTM for velocity model building.
摘要:
Method for simultaneous full-wavefield inversion of gathers of source (or receiver) encoded geophysical data to determine a physical properties model (118) for a subsurface region, especially suitable for surveys where fixed receiver geometry conditions were not satisfied in the data acquisition. Simultaneous source separation (104) is performed to lessen any effect of the measured geophysical data's not satisfying the fixed-receiver assumption. A data processing step (106) coming after the simultaneous source separation acts to conform model-simulated data (105) to the measured geophysical data (108) for source and receiver combinations that are missing in the measured geophysical data.
摘要:
Method for simultaneous full-wavefield inversion of gathers of source (or receiver) encoded geophysical data to determine a physical properties model (118) for a subsurface region, especially suitable for surveys where fixed receiver geometry conditions were not satisfied in the data acquisition. Simultaneous source separation (104) is performed to lessen any effect of the measured geophysical data's not satisfying the fixed-receiver assumption. A data processing step (106) coming after the simultaneous source separation acts to conform model-simulated data (105) to the measured geophysical data (108) for source and receiver combinations that are missing in the measured geophysical data.