摘要:
Disclosed herein is a display film stack for a backlight display system. In one embodiment, the display system comprises: a light source, a first film comprising a first surface texture layer that is formed of a first material of a first refractive index, and a second film comprising a second surface texture layer that is formed of a second material of a second refractive index. The second film is disposed between the light source and the first film. The second refractive index is greater than the first refractive index. The light source is disposed in optical communication with the first film and the second film. The first surface texture layer and the second surface texture layer comprise unit structures independently selected from the group consisting of hemispherical structures, partial hemispherical structures, ellipsoidal structures, immersed spherical beads, ellipsoidal beads, “bell-shape” bump and complex lens shape structures.
摘要:
Disclosed herein is a display film stack for a backlight display system. In one embodiment, the display system comprises: a light source, a first film comprising a first surface texture layer that is formed of a first material of a first refractive index, and a second film comprising a second surface texture layer that is formed of a second material of a second refractive index. The second film is disposed between the light source and the first film. The second refractive index is greater than the first refractive index. The light source is disposed in optical communication with the first film and the second film. The first surface texture layer and the second surface texture layer comprise unit structures independently selected from the group consisting of hemispherical structures, partial hemispherical structures, ellipsoidal structures, immersed spherical beads, ellipsoidal beads, “bell-shape” bump and complex lens shape structures.
摘要:
A system for the inspection of and a process for the correction of defects in a microreplicated optical display film manufacturing process. The process steps of manufacturing a master, a plurality of shims from the master, and a multiplicity of display films from each shim are integrated with a systemic defect identification and correction process. Each primary manufacturing step has its own inspection system and correction process where defect information for that step of the process is fed back and analyzed; and from that analysis the subprocess is adjusted to eliminate or reduce the detected defect. The systemic defect is identified as to its source and then fed back and analyzed in the correction step of the respective subprocess in order to cure the root of the defect.
摘要:
A transfer function between the inlet air-flow consumed by a Gas Turbine engine, and the engine parameters of speed, pressure ratio, and Inlet Guide Vane (IGV) angle is described. An active compressor Operating Limit Line (OLL) management strategy that leverages this improved flow measurement transfer function is also described. The improved flow measurement capability afforded by the transfer function permits a deterioration in flow rate caused by compressor fouling to be detected. Using the deterioration in flow rate as a proxy for compressor fouling, a degraded surge boundary associated with fouling can be predicted, using a transfer function between degradation of air-flow along operating line and degradation of surge line. In combination, the inventive improvements in flow measurement and operating line management afford added compressor surge protection across the operating range, while permitting the attainment of elevated pressure ratios associated with high thermodynamic efficiency and output.
摘要:
A system for the inspection of and a process for the correction of defects in a microreplicated optical display film manufacturing process. The process steps of manufacturing a master, a plurality of shims from the master, and a multiplicity of display films from each shim are integrated with a systemic defect identification and correction process. Each primary manufacturing step has its own inspection system and correction process where defect information for that step of the process is fed back and analyzed; and from that analysis the subprocess is adjusted to eliminate or reduce the detected defect. The systemic defect is identified as to its source and then fed back and analyzed in the correction step of the respective subprocess in order to cure the root of the defect.