-
公开(公告)号:US08423454B2
公开(公告)日:2013-04-16
申请号:US13344709
申请日:2012-01-06
申请人: Jie Chen , Timothy John Breault , Fernando Cela Diaz , William Anthony Nobili , Sandi Setiawan , Harsh Singhal , Agus Sudjianto , Andrea Renee Turner , Bradford Timothy Winkelman
发明人: Jie Chen , Timothy John Breault , Fernando Cela Diaz , William Anthony Nobili , Sandi Setiawan , Harsh Singhal , Agus Sudjianto , Andrea Renee Turner , Bradford Timothy Winkelman
IPC分类号: G06Q40/00
CPC分类号: G06Q10/067 , G06Q40/00
摘要: Embodiments of the present invention relate to methods and apparatuses for determining leading indicators and/or for modeling one or more time series. For example, in some embodiments, a method is provided that includes: (a) receiving first data indicating the value of a total income amount for a plurality of consumers over a period of time; (b) receiving second data indicating the value of a total debt amount for a plurality of consumers over a period of time; (c) selecting a consumer leverage time series that compares the total income amount to the total debt amount over a period of time; (d) modeling the consumer leverage time series based at least partially on the first and second data; (e) determining, using a processor, the value of the cycle component for a particular time; and (f) outputting an indication of the value of the cycle component for the particular time.
摘要翻译: 本发明的实施例涉及用于确定前导指示符和/或建模一个或多个时间序列的方法和装置。 例如,在一些实施例中,提供了一种方法,其包括:(a)在一段时间内接收指示多个消费者的总收入金额的值的第一数据; (b)在一段时间内接收表示多个消费者的总债务金额的第二数据; (c)选择消费者杠杆时间序列,将总收入与一段时间内的债务总额进行比较; (d)至少部分地基于第一和第二数据对消费者杠杆时间序列进行建模; (e)使用处理器确定特定时间的周期分量的值; 和(f)输出特定时间的循环分量的值的指示。
-
公开(公告)号:US20120173399A1
公开(公告)日:2012-07-05
申请号:US13344709
申请日:2012-01-06
申请人: Jie Chen , Timothy John Breault , Fernando Cela Diaz , William Anthony Nobili , Sandi Setiawan , Harsh Singhal , Agus Sudjianto , Andrea Renee Turner , Bradford Timothy Winkelman
发明人: Jie Chen , Timothy John Breault , Fernando Cela Diaz , William Anthony Nobili , Sandi Setiawan , Harsh Singhal , Agus Sudjianto , Andrea Renee Turner , Bradford Timothy Winkelman
CPC分类号: G06Q10/067 , G06Q40/00
摘要: Embodiments of the present invention relate to methods and apparatuses for determining leading indicators and/or for modeling one or more time series. For example, in some embodiments, a method is provided that includes: (a) receiving first data indicating the value of a total income amount for a plurality of consumers over a period of time; (b) receiving second data indicating the value of a total debt amount for a plurality of consumers over a period of time; (c) selecting a consumer leverage time series that compares the total income amount to the total debt amount over a period of time; (d) modeling the consumer leverage time series based at least partially on the first and second data; (e) determining, using a processor, the value of the cycle component for a particular time; and (f) outputting an indication of the value of the cycle component for the particular time.
摘要翻译: 本发明的实施例涉及用于确定前导指示符和/或建模一个或多个时间序列的方法和装置。 例如,在一些实施例中,提供了一种方法,其包括:(a)在一段时间内接收指示多个消费者的总收入金额的值的第一数据; (b)在一段时间内接收表示多个消费者的总债务金额的第二数据; (c)选择消费者杠杆时间序列,将总收入与一段时间内的债务总额进行比较; (d)至少部分地基于第一和第二数据对消费者杠杆时间序列进行建模; (e)使用处理器确定特定时间的周期分量的值; 和(f)输出特定时间的循环分量的值的指示。
-
公开(公告)号:US08577776B2
公开(公告)日:2013-11-05
申请号:US13618121
申请日:2012-09-14
申请人: Agus Sudjianto , Michael Chorba , Daniel Hudson , Sandi Setiawan , Jocelyn Sikora , Harsh Singhal , Kiran Vuppu , Kaloyan Mihaylov , Jie Chen , Timothy J. Breault , Arun R. Pinto , Naveen G. Yeri , Benhong Zhang , Zhe Zhang , Tony Nobili , Hungien Wang , Aijun Zhang
发明人: Agus Sudjianto , Michael Chorba , Daniel Hudson , Sandi Setiawan , Jocelyn Sikora , Harsh Singhal , Kiran Vuppu , Kaloyan Mihaylov , Jie Chen , Timothy J. Breault , Arun R. Pinto , Naveen G. Yeri , Benhong Zhang , Zhe Zhang , Tony Nobili , Hungien Wang , Aijun Zhang
IPC分类号: G06Q40/00
摘要: A data driven and forward looking risk and reward appetite methodology for consumer and small business is described. The methodology includes account level historical data collection for customers associated with accounts as part of a portfolio. The account level historical data is segmented into groups of customers with similar revenues and loss characteristics. Segmented data is decomposed into seasoning, vintage, and cycle effects. Statistical clusters are formed based upon the data and effects. A simulation is applied to the statistical clusters and prediction data is generated. A simulation strategy to forecast and simulate revenue and loss volatility is developed. Efficient frontier curves of risk (e.g., return volatility) and reward (e.g., expected return) are created for the current portfolio under various economic scenarios.
摘要翻译: 描述了消费者和小企业的数据驱动和前瞻性风险和奖励食欲方法。 该方法包括与帐户相关联的客户的帐户级历史数据收集作为投资组合的一部分。 账户级别的历史数据被分为具有相似收入和损失特征的客户群体。 分段数据分解为调味料,复古和循环效应。 基于数据和效果形成统计群集。 将仿真应用于统计集群,生成预测数据。 开发了一种预测和模拟收入和损失波动率的模拟策略。 在各种经济情景下为当前投资组合创建有效的边际风险曲线(例如回报波动性)和报酬(例如预期收益)。
-
公开(公告)号:US08326723B2
公开(公告)日:2012-12-04
申请号:US12546807
申请日:2009-08-25
申请人: Agus Sudjianto , Michael Chorba , Daniel Hudson , Sandi Setiawan , Jocelyn Sikora , Harsh Singhal , Kiran Vuppu , Kaloyan Mihaylov , Jie Chen , Timothy J. Breault , Arun R. Pinto , Naveen G. Yeri , Benhong Zhang , Zhe Zhang , Tony Nobili , Hungien Wang , Aijun Zhang
发明人: Agus Sudjianto , Michael Chorba , Daniel Hudson , Sandi Setiawan , Jocelyn Sikora , Harsh Singhal , Kiran Vuppu , Kaloyan Mihaylov , Jie Chen , Timothy J. Breault , Arun R. Pinto , Naveen G. Yeri , Benhong Zhang , Zhe Zhang , Tony Nobili , Hungien Wang , Aijun Zhang
IPC分类号: G06Q40/00
摘要: A data driven and forward looking risk and reward appetite methodology for consumer and small business is described. The methodology includes customer segmentation to create pools of homogeneous assets in terms of revenue and loss characteristics, forward looking simulation to forecast expected values and volatilities of revenue and loss, and risk and reward optimization of the portfolio. One methodology used for modeling revenue and loss is a generalized additive effect decomposition model to fit historical data. Based on the model, a segmentation procedure is performed, which allows for creation of groups of customers with similar revenue and loss characteristics. An estimation procedure for the model is developed and a simulation strategy to forecast and simulate revenue and loss volatility is developed. Efficient frontier curves of risk (e.g., return volatility) and reward (e.g., expected return) are created for the current portfolio under various economic scenarios.
摘要翻译: 描述了消费者和小企业的数据驱动和前瞻性风险和奖励食欲方法。 该方法包括客户细分,以便在收入和损失特征方面创建同质资产池,前瞻性模拟以预测收益和损失的预期值和波动率,以及投资组合的风险和报酬优化。 用于建模收入和损失的一种方法是广义加和效应分解模型,以适应历史数据。 基于该模型,执行分割程序,其允许创建具有类似收入和损失特征的客户群体。 开发了模型的估计程序,并开发了一种预测和模拟收入和损失波动性的模拟策略。 在各种经济情景下为当前投资组合创建有效的边际风险曲线(例如回报波动性)和报酬(例如预期收益)。
-
公开(公告)号:US20100293107A1
公开(公告)日:2010-11-18
申请号:US12546807
申请日:2009-08-25
申请人: Agus Sudjianto , Michael Chorba , Daniel Hudson , Sandi Setiawan , Jocelyn Sikora , Harsh Singhal , Kiran Vuppu , Kaloyan Mihaylov , Jie Chen , Timothy J. Breault , Arun R. Pinto , Naveen G. Yeri , Benhong Zhang , Zhe Zhang , Tony Nobili , Hungien Wang , Aijun Zhang
发明人: Agus Sudjianto , Michael Chorba , Daniel Hudson , Sandi Setiawan , Jocelyn Sikora , Harsh Singhal , Kiran Vuppu , Kaloyan Mihaylov , Jie Chen , Timothy J. Breault , Arun R. Pinto , Naveen G. Yeri , Benhong Zhang , Zhe Zhang , Tony Nobili , Hungien Wang , Aijun Zhang
IPC分类号: G06Q40/00
摘要: A data driven and forward looking risk and reward appetite methodology for consumer and small business is described. The methodology includes customer segmentation to create pools of homogeneous assets in terms of revenue and loss characteristics, forward looking simulation to forecast expected values and volatilities of revenue and loss, and risk and reward optimization of the portfolio. One methodology used for modeling revenue and loss is a generalized additive effect decomposition model to fit historical data. Based on the model, a segmentation procedure is performed, which allows for creation of groups of customers with similar revenue and loss characteristics. An estimation procedure for the model is developed and a simulation strategy to forecast and simulate revenue and loss volatility is developed. Efficient frontier curves of risk (e.g., return volatility) and reward (e.g., expected return) are created for the current portfolio under various economic scenarios.
摘要翻译: 描述了消费者和小企业的数据驱动和前瞻性风险和奖励食欲方法。 该方法包括客户细分,以便在收入和损失特征方面创建同质资产池,前瞻性模拟以预测收益和损失的预期值和波动率,以及投资组合的风险和报酬优化。 用于建模收入和损失的一种方法是广义加和效应分解模型,以适应历史数据。 基于该模型,执行分割程序,其允许创建具有类似收入和损失特征的客户群体。 开发了模型的估计程序,并开发了一种预测和模拟收入和损失波动性的模拟策略。 在各种经济情景下为当前投资组合创建有效的边际风险曲线(例如回报波动性)和报酬(例如预期收益)。
-
-
-
-