Determining leading indicators
    1.
    发明授权
    Determining leading indicators 有权
    确定领先指标

    公开(公告)号:US08423454B2

    公开(公告)日:2013-04-16

    申请号:US13344709

    申请日:2012-01-06

    IPC分类号: G06Q40/00

    CPC分类号: G06Q10/067 G06Q40/00

    摘要: Embodiments of the present invention relate to methods and apparatuses for determining leading indicators and/or for modeling one or more time series. For example, in some embodiments, a method is provided that includes: (a) receiving first data indicating the value of a total income amount for a plurality of consumers over a period of time; (b) receiving second data indicating the value of a total debt amount for a plurality of consumers over a period of time; (c) selecting a consumer leverage time series that compares the total income amount to the total debt amount over a period of time; (d) modeling the consumer leverage time series based at least partially on the first and second data; (e) determining, using a processor, the value of the cycle component for a particular time; and (f) outputting an indication of the value of the cycle component for the particular time.

    摘要翻译: 本发明的实施例涉及用于确定前导指示符和/或建模一个或多个时间序列的方法和装置。 例如,在一些实施例中,提供了一种方法,其包括:(a)在一段时间内接收指示多个消费者的总收入金额的值的第一数据; (b)在一段时间内接收表示多个消费者的总债务金额的第二数据; (c)选择消费者杠杆时间序列,将总收入与一段时间内的债务总额进行比较; (d)至少部分地基于第一和第二数据对消费者杠杆时间序列进行建模; (e)使用处理器确定特定时间的周期分量的值; 和(f)输出特定时间的循环分量的值的指示。

    DETERMINING LEADING INDICATORS
    2.
    发明申请
    DETERMINING LEADING INDICATORS 有权
    确定领导指标

    公开(公告)号:US20120173399A1

    公开(公告)日:2012-07-05

    申请号:US13344709

    申请日:2012-01-06

    IPC分类号: G06Q40/00 G06Q99/00

    CPC分类号: G06Q10/067 G06Q40/00

    摘要: Embodiments of the present invention relate to methods and apparatuses for determining leading indicators and/or for modeling one or more time series. For example, in some embodiments, a method is provided that includes: (a) receiving first data indicating the value of a total income amount for a plurality of consumers over a period of time; (b) receiving second data indicating the value of a total debt amount for a plurality of consumers over a period of time; (c) selecting a consumer leverage time series that compares the total income amount to the total debt amount over a period of time; (d) modeling the consumer leverage time series based at least partially on the first and second data; (e) determining, using a processor, the value of the cycle component for a particular time; and (f) outputting an indication of the value of the cycle component for the particular time.

    摘要翻译: 本发明的实施例涉及用于确定前导指示符和/或建模一个或多个时间序列的方法和装置。 例如,在一些实施例中,提供了一种方法,其包括:(a)在一段时间内接收指示多个消费者的总收入金额的值的第一数据; (b)在一段时间内接收表示多个消费者的总债务金额的第二数据; (c)选择消费者杠杆时间序列,将总收入与一段时间内的债务总额进行比较; (d)至少部分地基于第一和第二数据对消费者杠杆时间序列进行建模; (e)使用处理器确定特定时间的周期分量的值; 和(f)输出特定时间的循环分量的值的指示。

    Chat Categorization and Agent Performance Modeling
    7.
    发明申请
    Chat Categorization and Agent Performance Modeling 审中-公开
    聊天分类和代理性能建模

    公开(公告)号:US20120130771A1

    公开(公告)日:2012-05-24

    申请号:US13161291

    申请日:2011-06-15

    IPC分类号: G06Q10/00 G06F17/30

    摘要: Chat categorization uses semi-supervised clustering to provide Voice of the Customer (VOC) analytics over unstructured data via an historical understanding of topic categories discussed to derive an automated methodology of topic categorization for new data; application of semi-supervised clustering (SSC) for VOC analytics; generation of seed data for SSC; and a voting algorithm for use in the absence of domain knowledge/manual tagged data. Customer service interactions are mined and quality of these interactions is measured by “Customer's Vote” which, in turn, is determined by the customer's experience during the interaction and the quality of customer issue resolution. Key features of the interaction that drive a positive experience and resolution are automatically learned via machine learning driven algorithms based on historical data. This, in turn, is used to coach/teach the system/service representative on future interactions.

    摘要翻译: 聊天分类使用半监督聚类,通过对所讨论的主题类别的历史了解,为非结构化数据提供客户声音(VOC)分析,以获得新数据的主题分类的自动化方法; 应用半监督聚类(SSC)进行VOC分析; SSC的种子数据的生成; 以及在没有域知识/手动标记数据的情况下使用的投票算法。 客户服务互动被挖掘,这些互动的质量是通过“客户的投票”衡量的,而客户的投票又由客户在交互中的经验和客户问题解决的质量决定。 通过基于历史数据的机器学习驱动的算法,自动学习促进积极体验和分辨率的交互的主要特征。 这反过来用于教授/教授系统/服务代表对未来的交互。

    Evaluating models using forecast error attribution
    8.
    发明授权
    Evaluating models using forecast error attribution 有权
    使用预测误差归因评估模型

    公开(公告)号:US08682617B2

    公开(公告)日:2014-03-25

    申请号:US13187638

    申请日:2011-07-21

    IPC分类号: G06F15/00

    CPC分类号: G06Q10/06

    摘要: Methods, computer readable media, and apparatuses for evaluating models using forecast error attribution are presented. According to one or more aspects, one or more input values corresponding to one or more input variables may be forecast. One or more results of a modeling function may be calculated using the one or more forecasted input values. Thereafter, actual performance data corresponding to the modeling function may be received. One or more holdout values for the modeling function may be calculated using the actual performance data. Subsequently, a graph that includes the one or more results of the modeling function, the actual performance data, and the one or more holdout values for the modeling function may be plotted. In some arrangements, the one or more holdout values for the modeling function may be indicative of one or more assumption errors made with respect to the one or more forecasted input values.

    摘要翻译: 提出了使用预测误差归因评估模型的方法,计算机可读介质和装置。 根据一个或多个方面,可以预测对应于一个或多个输入变量的一个或多个输入值。 可以使用一个或多个预测输入值来计算建模功能的一个或多个结果。 此后,可以接收与建模功能对应的实际性能数据。 可以使用实际的性能数据来计算建模功能的一个或多个保持值。 随后,可以绘制包括建模功能的一个或多个结果,实际性能数据以及建模功能的一个或多个保持值的图。 在一些布置中,用于建模功能的一个或多个保持值可以指示针对一个或多个预测输入值做出的一个或多个假设误差。

    EVALUATING MODELS USING FORECAST ERROR ATTRIBUTION
    9.
    发明申请
    EVALUATING MODELS USING FORECAST ERROR ATTRIBUTION 有权
    使用预测误差归因的评估模型

    公开(公告)号:US20130024160A1

    公开(公告)日:2013-01-24

    申请号:US13187638

    申请日:2011-07-21

    IPC分类号: G06F15/00

    CPC分类号: G06Q10/06

    摘要: Methods, computer readable media, and apparatuses for evaluating models using forecast error attribution are presented. According to one or more aspects, one or more input values corresponding to one or more input variables may be forecast. One or more results of a modeling function may be calculated using the one or more forecasted input values. Thereafter, actual performance data corresponding to the modeling function may be received. One or more holdout values for the modeling function may be calculated using the actual performance data. Subsequently, a graph that includes the one or more results of the modeling function, the actual performance data, and the one or more holdout values for the modeling function may be plotted. In some arrangements, the one or more holdout values for the modeling function may be indicative of one or more assumption errors made with respect to the one or more forecasted input values.

    摘要翻译: 提出了使用预测误差归因评估模型的方法,计算机可读介质和装置。 根据一个或多个方面,可以预测对应于一个或多个输入变量的一个或多个输入值。 可以使用一个或多个预测输入值来计算建模功能的一个或多个结果。 此后,可以接收与建模功能对应的实际性能数据。 可以使用实际的性能数据来计算建模功能的一个或多个保持值。 随后,可以绘制包括建模功能的一个或多个结果,实际性能数据以及建模功能的一个或多个保持值的图。 在一些布置中,用于建模功能的一个或多个保持值可以指示针对一个或多个预测输入值做出的一个或多个假设误差。