摘要:
An adjustable and foldable device for visual field testing or treatment includes a computer display mounted on a base and presents visual stimuli to the patient. An associated head support assembly with a chinrest supports and positions the head of the subject with respect to the display. An articulated arm joins the base and the head support assembly. The arm will resist a given downward force supplied by the head, and is foldable toward the display to create a more compact and portable device. Additional articulations may allow the head support assembly to fold upon arm, and the arm to fold upon the base. The device may include a locking mechanism that secures the device in a folded or unfolded configuration.
摘要:
A cardiac stimulator capable of measuring pacing impedance includes a tank capacitor for delivering charge to the heart via device leads, a shunt resistor, and high-impedance buffers for measuring pacing current through the shunt resistor. Soon after the leading edge of the stimulation pulse, the voltage across the shunt resistor, as sampled by a high-impedance buffer, indicates lead and cardiac tissue resistance. Just prior to opening the pacing switch to terminate the stimulation pulse, the voltage across the shunt resistor is sampled by a high-impedance buffer and held once again to allow the capacitance of the lead/heart tissue to be calculated. In alternative embodiments, a high-impedance buffer measures the voltage between the tank capacitor and ground immediately following the stimulation pulse to allow estimation of the lead/heart tissue capacitance. In one alternative embodiment, a look-up table is created in main memory and searched to find the closest lead/heart tissue capacitance estimate to any arbitrary degree of accuracy. In another alternative embodiment, the lead/heart tissue capacitance is estimated by successive approximation to any arbitrary degree of accuracy. When the lead/heart tissue capacitance and lead resistance have been determined, a plurality of parameters of importance for analyzing and optimizing a cardiac stimulation system may be calculated, such as the instantaneous current, the average current, the charge, and the energy delivered to the cardiac tissue.
摘要:
A technique for acquiring and accessing information from a medical implantable device is provided. Analog waveforms of interest are sensed and processed by signal acquisition circuitry. Analog parameters of interest are applied to selector switches which are controlled by a logic circuit. The logic circuit is also coupled an A/D converter for converting the analog signals to digital values. The digital values are stored in dedicated registers and are available for telemetry to an external device upon receipt of a request or prompt signal. When a digitized value is accessed and telemetered, the control logic circuit changes the conductive state of the selector switches to apply the corresponding analog signal to the A/D converter. The resulting digital value is applied to the corresponding register to refresh the accessed and telemetered value. The technique permits the external device to request and configure the implanted device to send only digitized values of interest. The technique also makes efficient use of the A/D converter, which consumes energy only as needed to refresh the memory when digital values are accessed and telemetered.
摘要:
An implantable medical device including an enclosure and a header portion attached to the enclosure. The header includes a lead cavity into which a lead can be inserted. The lead cavity includes a compression device, such as a spring, for aligning a highly visible indicator plunger at least partially hidden from view inside the volume defined by an annular electrode, or other opaque object, partially surrounding the lead cavity. The plunger includes at least a portion that is easily visible to a surgeon during implantation of the medical device. When a lead is inserted into the lead cavity, the end of the lead pushes against the indicator plunger thereby moving the plunger and compressing the spring. When the lead is fully inserted into the lead cavity, the plunger becomes visible as it is pushed away from the volume defined by the annular electrode. In this way, the plunger provides a positive indication that the lead has been fully inserted into the header. The annular electrode may also include a retaining surface that will contact a corresponding surface on the plunger should the plunger break loose from the spring. This feature helps to keep the plunger from migrating from the header into the body should the plunger break away from the spring.
摘要:
An implantable medical device for electrically stimulating the heart to beat generally includes a processor, a plurality of electrodes, a sense amplifier, a pulse generator, and a heart status monitor. The processor can determine when the patient has entered an environment of high electromagnetic interference. When this occurs, the processor forces the implantable device into a safe noise mode. While in the same noise mode (which preferably continues while the patient is experiencing the electromagnetic interference), the implantable device paces the heart on demand and inhibits pacing during the vulnerable period. The processor determines when the vulnerable period is occurring and when the heart needs to be paced by monitoring a status signal from the heart status monitor. The status signal generated by the heart status monitor preferably is not sensitive to the electromagnetic interference, and thus the processor can determine the bio-mechanical state of the heart during a cardiac cycle even in the face of high electromagnetic interference. The heart status monitor preferably includes an impedance measurement circuit, but may include any type of cardiac sensor that can generate a status signal from which the processor can determine the beginning and ending of the vulnerable period. Accordingly, even during a period of high electromagnetic interference, the implantable device can provide on demand pacing support to the patient.
摘要:
A cardiac stimulator capable of measuring pacing impedance includes a tank capacitor for delivering charge to the heart via device leads, a shunt resistor, and high-impedance buffers for measuring pacing current through the shunt resistor. Soon after the leading edge of the stimulation pulse, the voltage across the shunt resistor, as sampled by a high-impedance buffer, indicates lead and cardiac tissue resistance. Just prior to opening the pacing switch to terminate the stimulation pulse, the voltage across the shunt resistor is sampled by a high-impedance buffer and held once again to allow the capacitance of the lead/heart tissue to be calculated. In alternative embodiments, a high-impedance buffer measures the voltage between the tank capacitor and ground immediately following the stimulation pulse to allow estimation of the lead/heart tissue capacitance. In one alternative embodiment, a look-up table is created in main memory and searched to find the closest lead/heart tissue capacitance estimate to any arbitrary degree of accuracy. In another alternative embodiment, the lead/heart tissue capacitance is estimated by successive approximation to any arbitrary degree of accuracy. When the lead/heart tissue capacitance and lead resistance have been determined, a plurality of parameters of importance for analyzing and optimizing a cardiac stimulation system may be calculated, such as the instantaneous current, the average current, the charge, and the energy delivered to the cardiac tissue.
摘要:
An implantable medical device for electrically stimulating the heart to beat generally includes a processor, a plurality of electrodes, a sense amplifier, a pair of comparators, inner and outer target logic units, and pulse generator. The processor controls the magnitudes of inner and outer target reference signals which are generated by the inner and outer target logic units, respectively. The outer target is adjusted to be approximately equal to the peak amplitude of the cardiac signal. The processor stores representations of the outer target reference in memory. Alternatively or additionally, the processor computes a histogram of the relative or absolute number of cardiac cycles that occur over a given period of time for each outer target setting. The processor can be directed to retrieve the outer target representations and/or the histogram from memory and transmit that information to an external programmer for use by a physician.
摘要:
A cardiac stimulator with a method and apparatus for automatically switching the cardiac stimulator to its normal mode from its backup mode. A fault monitor receives fault signals and determines whether a particular fault warrants activation of the backup mode. If so, a number of attempts to reactivate the normal mode are permitted. The normal mode may be reactivated if the stored information is valid and if the circuitry is operational.
摘要:
An implantable cardiac stimulator for detecting capture or adjusting the strength or duration of pacing pulses by using an evoked response detector and periodically tuning the evoked response detector. When the electric evoked response detector is to be tuned, capture is verified by detecting the mechanical evoked response. As the magnitude of the stimulating pulse is adjusted to isolate the threshold as detected by the mechanical response detector. At the same time, the electrical evoked response is also monitored. The difference between the detected electrical signal following capture as detected by the mechanical response detector and the signal following non-capture is used to tune the electrical evoked response detection apparatus and algorithm. The energy of the pacing pulse can then be optimized by adjusting both strength and duration. A very small safety margin is needed since capture is continuously monitored by the electrical evoked response apparatus and a safety pulse is immediately applied if capture is lost. The safety pulse can be applied in the same cardiac cycle so that the heart beat remains controlled.
摘要:
A cardiac stimulator including a patient warning apparatus, having a real time-clock for delaying delivery of a warning stimulus until a preselected time of day. The time of day may be selected dynamically with respect to detected patterns of patient activity. The stimulator can adjust the time for delivery of patient warning based on the detected circadian rhythm of the patient. In one embodiment, the cardiac stimulator is an implantable pacemaker or defibrillator or combination which can also be programmed to automatically alter the peak voltage of its output stimulus, in particular, to increase the peak voltage of the output stimulus whenever a condition exists requiring patient notification or warning. A stimulus generator in the stimulator can delivers electrical current to the electrically conductive suture point or warning electrode at a preselected voltage level. A sensor for detecting patient reaction to a warning stimulus may be an accelerometer or motion/vibration transducer or other sensor capable of detecting a reaction to a warning stimulus. The level of the stimulus directed to the patient's skeletal muscle is regulated until a preselected magnitude of reaction has been achieved. The reaction is also maintained below a pre-selected maximum to avoid discomfort to the patient.