Abstract:
The present invention relates to an ultrasound system and a method of setting an intima-media thickness (IMT) measuring region. The ultrasound system comprises an ultrasound diagnosis unit configured to transmit ultrasound signals to a target object, receive ultrasound echo signals reflected from the target object and form an ultrasound image including a plurality of pixels based on the ultrasound echo signals, each pixel having an intensity of gray level. The ultrasound system further comprises a processor configured to compute intensities of the pixels at each row in the ultrasound image to form a first graph, compute first moving averages of the intensities for first subsets of rows in the ultrasound image by dividing the intensities by a thickness of a blood vessel to form a second graph, compute second moving averages of the intensities for second subsets of rows in the ultrasound image by dividing the intensities by a thickness of a vascular wall to form a third graph, and set an intima-media thickness (IMT) measuring region by using inflection points from the second and third graphs.
Abstract:
The present invention relates to an ultrasound system and a method of setting an intima-media thickness (IMT) measuring region. The ultrasound system comprises an ultrasound diagnosis unit configured to transmit ultrasound signals to a target object, receive ultrasound echo signals reflected from the target object and form an ultrasound image including a plurality of pixels based on the ultrasound echo signals, each pixel having an intensity of gray level. The ultrasound system further comprises a processor configured to compute intensities of the pixels at each row in the ultrasound image to form a first graph, compute first moving averages of the intensities for first subsets of rows in the ultrasound image by dividing the intensities by a thickness of a blood vessel to form a second graph, compute second moving averages of the intensities for second subsets of rows in the ultrasound image by dividing the intensities by a thickness of a vascular wall to form a third graph, and set an intima-media thickness (IMT) measuring region by using inflection points from the second and third graphs.
Abstract:
The present disclosure relates to an ultrasonic diagnostic apparatus for providing a combination of an ultrasound image and a color flow image. The ultrasonic diagnostic apparatus detects a color index of each of pixels in a color flow image and provides a contour image composed of contour lines. Here, each of the contour lines is formed by grouping and connecting pixels having the same color index based on the detected color indexes of the respective pixels and formed for at least one color index level. A diagnosis method of the apparatus is also disclosed.
Abstract:
A medical imaging system and an image processing method for producing an optimized image from an input image are provided. The medical imaging system comprises: a parameter accumulator configured to accumulate a preset number of basic parameters; a parameter determiner configured to produce new reference parameters based on current reference parameters and the accumulated basic parameters to replace the current reference parameters with the new reference parameters; an image processor configured to process an input image to generate an optimized image according to an image processing algorithm based on the reference parameters sent from the parameter determiner; and a controller configured to control overall operation of the medical imaging system.
Abstract:
A medical imaging system and an image processing method for producing an optimized image from an input image are provided. The medical imaging system comprises: a parameter accumulator configured to accumulate a preset number of basic parameters; a parameter determiner configured to produce new reference parameters based on current reference parameters and the accumulated basic parameters to replace the current reference parameters with the new reference parameters; an image processor configured to process an input image to generate an optimized image according to an image processing algorithm based on the reference parameters sent from the parameter determiner; and a controller configured to control overall operation of the medical imaging system.