摘要:
The present disclosure relates to a FMCW Light Detection and Ranging system, a wave train of carrier frequency is modulated in narrow-band sequence, an delay interferometer with in-phase and quadrature outputs extracts the phase of this frequency modulation, and a coherent receiver with in-phase and quadrature outputs detects the phase of reflected light from a remote object, the ratio between two phases determines the distance of the remote object.
摘要:
The object of the present invention is to disclose a novel optical miniaturized handheld medical device for convenient monitoring and/or data collection of detailed signals on human cardiovascular function. The implementation consists of a number of advanced technologies, including interferometric detection, phase controlled focusing beam steering, auto-tracking scheme and algorism, and integrated optical chip assembly to enhance the device's performance and miniaturization. Briefly, this handheld medical device directs a single or dual output laser beam(s) onto certain skin surface to detect the surface vibration velocity at the point where the laser hits the surface. The skin surface vibrates in response to cardiovascular signals, such as blood pressure pulses, turbulent blood flow through narrowed arteries, pumping actions of the heart, or the closure of the heart valves etc. The miniaturized apparatus thus is capable of detecting these signals for the assessment of cardiovascular functions in both healthy and disease conditions.
摘要:
The present disclosure relates to a FMCW Light Detection and Ranging system, a wave train of carrier frequency is modulated in narrow-band sequence, an delay interferometer with in-phase and quadrature outputs extracts the phase of this frequency modulation, and a coherent receiver with in-phase and quadrature outputs detects the phase of reflected light from a remote object, the ratio between two phases determines the distance of the remote object.
摘要:
Systems and methods to reduce passband side-lobes associated with WSS-based ROADMs by applying a filter on each channel are provided. In an exemplary embodiment, a comb filter, such as a thin film filter or an interleaver, is utilized. Additionally, the present invention provides systems and methods to adaptively control amplifier target power and per wavelength target power to maintain signal launching power as per design in networks with WSS-based ROADMs. Accordingly, signal OSNR does not collapse faster than other similar configured system without WSS-based ROADM. In order to correct amplifier target power, the present invention utilizes system information about side-lobe size and OSNR at each amplifier.
摘要:
Systems and methods to reduce passband side-lobes associated with WSS-based ROADMs by applying a filter on each channel are provided. In an exemplary embodiment, a comb filter, such as a thin film filter or an interleaver, is utilized. Additionally, the present invention provides systems and methods to adaptively control amplifier target power and per wavelength target power to maintain signal launching power as per design in networks with WSS-based ROADMs. Accordingly, signal OSNR does not collapse faster than other similar configured system without WSS-based ROADM. In order to correct amplifier target power, the present invention utilizes system information about side-lobe size and OSNR at each amplifier.
摘要:
The present disclosure provides high-degree reconfigurable optical add-drop multiplexing (ROADM) systems using bi-directional wavelength selective switches (WSSs) and optical circulators. A single WSS is utilized on each degree of a node in a bi-directional manner, i.e. both ingress and egress share the same WSS. Advantageously, the present invention eliminates conventional splitters/combiners thereby capping intra-node insertion loss to a certain value regardless of the number of degrees. More importantly, the present invention reduces noise penalty associated with high-degree nodes while minimizing cost.