摘要:
A solid acid having a core of calixarene or calix resorcinarene. The solid acid is an ion conducting compound in which at least one of the hydroxyl groups is substituted by an organic group having a cation exchange group at a terminal end, a polymer electrolyte membrane including the same, and a fuel cell using the polymer electrolyte membrane. The polymer electrolyte membrane can provide low methanol crossover and high ionic conductivity. Accordingly, a fuel cell having high efficiency can be obtained by using the polymer electrolyte membrane.
摘要:
Provided are a dendrimer solid acid and a polymer electrolyte membrane using the same. The polymer electrolyte membrane includes a macromolecule of a dendrimer solid acid having ionically conductive terminal groups at the surface thereof and a minimum amount of ionically conductive terminal groups required for ionic conduction, thus suppressing swelling and allowing a uniform distribution of the dendrimer solid acid, thereby improving ionic conductivity. Since the number of ionically conductive terminal groups in the polymer electrolyte membrane is minimized and the polymer matrix in which swelling is suppressed is used, methanol crossover and difficulties of outflow due to a large volume may be reduced, and a macromolecule of the dendrimer solid acid having the ionically conductive terminal groups on the surface thereof is uniformly distributed. Accordingly, ionic conductivity is high and thus, the polymer electrolyte membrane shows good ionic conductivity even in non-humidified conditions.
摘要:
A solid acid having a core of calixarene or calix resorcinarene. The solid acid is an ion conducting compound in which at least one of the hydroxyl groups is substituted by an organic group having a cation exchange group at a terminal end, a polymer electrolyte membrane including the same, and a fuel cell using the polymer electrolyte membrane. The polymer electrolyte membrane can provide low methanol crossover and high ionic conductivity. Accordingly, a fuel cell having high efficiency can be obtained by using the polymer electrolyte membrane.
摘要:
Provided is a polymer electrolyte membrane including an inorganic nanoparticle bonded with a proton-conducting group, a solid acid and a proton-conducting polymer. The inorganic nanoparticle bonded with the proton-conducting group may be obtained by reacting a compound including a proton-conducting group with a metal precursor. The polymer electrolyte membrane has significantly enhanced proton conductivity and reduced methanol crossover.
摘要:
Provided are a dendrimer solid acid and a polymer electrolyte membrane using the same. The polymer electrolyte membrane includes a macromolecule of a dendrimer solid acid having ionically conductive terminal groups at the surface thereof and a minimum amount of ionically conductive terminal groups required for ionic conduction, thus suppressing swelling and allowing a uniform distribution of the dendrimer solid acid, thereby improving ionic conductivity. Since the number of ionically conductive terminal groups in the polymer electrolyte membrane is minimized and the polymer matrix in which swelling is suppressed is used, methanol crossover and difficulties of outflow due to a large volume may be reduced, and a macromolecule of the dendrimer solid acid having the ionically conductive terminal groups on the surface thereof is uniformly distributed. Accordingly, ionic conductivity is high and thus, the polymer electrolyte membrane shows good ionic conductivity even in non-humidified conditions.
摘要:
Provided are a dendrimer solid acid and a polymer electrolyte membrane using the same. The polymer electrolyte membrane includes a macromolecule of a dendrimer solid acid having ionically conductive terminal groups at the surface thereof and a minimum amount of ionically conductive terminal groups required for ionic conduction, thus suppressing swelling and allowing a uniform distribution of the dendrimer solid acid, thereby improving ionic conductivity. Since the number of ionically conductive terminal groups in the polymer electrolyte membrane is minimized and the polymer matrix in which swelling is suppressed is used, methanol crossover and difficulties of outflow due to a large volume may be reduced, and a macromolecule of the dendrimer solid acid having the ionically conductive terminal groups on the surface thereof is uniformly distributed. Accordingly, ionic conductivity is high and thus, the polymer electrolyte membrane shows good ionic conductivity even in non-humidified conditions.
摘要:
A solid acid having a core of calixarene or calix resorcinarene. The solid acid is an ion conducting compound in which at least one of the hydroxyl groups is substituted by an organic group having a cation exchange group at a terminal end, a polymer electrolyte membrane including the same, and a fuel cell using the polymer electrolyte membrane. The polymer electrolyte membrane can provide low methanol crossover and high ionic conductivity. Accordingly, a fuel cell having high efficiency can be obtained by using the polymer electrolyte membrane.
摘要:
A polymer electrolyte membrane including an ionic conducting polymer and a light-irradiated product of a photoacid generator (PAG), a method of manufacturing the same, and a fuel cell using the same. The polymer electrolyte membrane has excellent proton conductivity and homogeneity by radiating light such as UV light onto the PAG, thereby producing an acid radical which generates an acid. The polymer electrolyte membrane also suppresses methanol crossover well. The polymer electrolyte membrane can be used as an electrolyte membrane of a fuel cell, for example, a direct methanol fuel cell.
摘要:
An ion-conducting, sulfonated and crosslinked copolymer for use in a fuel cell is disclosed. The ion-conducting, sulfonated and crosslinked copolymer is made up of four monomers. The first monomer is an aromatic diol. The second monomer includes two groups, each group capable of reacting with the hydroxy groups of the first monomer, and each group independently selected from a nitro group and a halogen group. The third monomer is one of the first monomer or the second monomer, except that one of the hydrogen atoms attached to a benzene ring is substituted with —SO3Y, where Y is selected from hydrogen (H), lithium (Li), sodium (Na), potassium (K) and trialkyl ammonium of the form HNR3 where R is an alkyl group having from 1 to 5 carbon atoms. The fourth monomer includes at least three groups, each independently selected from a hydroxy group, a nitro group, and a halogen group.
摘要:
Provided is a polymer electrolyte membrane including an inorganic nanoparticle bonded with a proton-conducting group, a solid acid and a proton-conducting polymer. The inorganic nanoparticle bonded with the proton-conducting group may be obtained by reacting a compound including a proton-conducting group with a metal precursor. The polymer electrolyte membrane has significantly enhanced proton conductivity and reduced methanol crossover.