Bilinear illumination model for robust face recognition
    1.
    发明授权
    Bilinear illumination model for robust face recognition 有权
    双线性照明模型,用于健壮的人脸识别

    公开(公告)号:US07609860B2

    公开(公告)日:2009-10-27

    申请号:US11251222

    申请日:2005-10-14

    CPC分类号: G06K9/4661

    摘要: A method recognizes a face in an image. A morphable model having shape and pose parameters is fitted to a face in an image to construct a three-dimensional model of the face. Texture is extracted from the face in the image using the three-dimensional model. The shape and texture are projected into a bilinear illumination model to generate illumination bases for the face in the image. The illumination bases for the face in the image are compared to illumination bases of each of a plurality of bilinear illumination models of known faces to identify the face in the image.

    摘要翻译: 一种方法识别图像中的一张脸。 具有形状和姿态参数的变形模型被拟合到图像中的面部以构建面部的三维模型。 使用三维模型从图像中的脸部提取纹理。 将形状和纹理投影到双线性照明模型中以为图像中的脸部产生照明基础。 将图像中的脸部的照明基底与已知面部的多个双线性照明模型中的每一个的照明基底进行比较,以识别图像中的脸部。

    Constructing heads from 3D models and 2D silhouettes
    2.
    发明授权
    Constructing heads from 3D models and 2D silhouettes 失效
    从3D模型和2D剪影构建头

    公开(公告)号:US07212664B2

    公开(公告)日:2007-05-01

    申请号:US10636355

    申请日:2003-08-07

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00288 G06T17/00

    摘要: A method reconstructs or synthesizes heads from 3D models of heads and 2D silhouettes of heads. A 3D statistical model is generated from multiple real human heads. The 3D statistical model includes a model parameter in the form of basis vectors and corresponding coefficients. Multiple 2D silhouettes of a particular head are acquired using a camera for example. The 3D statistical model is fitted to multiple 2D silhouettes to determine a particular value of the model parameter corresponding to the plurality of 2D silhouettes. Then, the 3D statistical model is rendered according to the particular value of the model parameter to reconstruct the particular head.

    摘要翻译: 一种方法从头部的3D模型和头部的2D轮廓重建或合成头部。 一个3D统计模型是从多个真人脑中产生的。 3D统计模型包括基矢量和对应系数形式的模型参数。 使用相机例如获取特定头部的多个2D轮廓。 将3D统计模型拟合到多个2D轮廓以确定对应于多个2D轮廓的模型参数的特定值。 然后,根据模型参数的特定值来渲染3D统计模型以重建特定的头部。

    Method and system for generating bi-linear models for faces
    3.
    发明授权
    Method and system for generating bi-linear models for faces 有权
    用于生成面部双线性模型的方法和系统

    公开(公告)号:US07609859B2

    公开(公告)日:2009-10-27

    申请号:US11152528

    申请日:2005-06-14

    CPC分类号: G06K9/4661

    摘要: A method generates a three-dimensional, bi-linear, illumination model for arbitrary faces. A large number of images are acquired of many different faces. For each face, multiple images are acquired with varying poses and varying illumination. A three-mode singular value decomposition is applied to the images to determine parameters of the model. The model can be fit to a probe image of an unknown face. Then, the model can be compared with models of a gallery of images of unknown faces to recognize the face in the probe image.

    摘要翻译: 一种方法为任意面生成三维,双线性照明模型。 许多不同的脸部获得了大量的图像。 对于每个脸部,以不同的姿势和变化的照明采集多个图像。 对图像应用三模式奇异值分解以确定模型的参数。 该模型可以适应未知脸部的探针图像。 然后,该模型可以与未知脸部图像库的模型进行比较,以识别探针图像中的脸部。

    Constructing heads from 3D models and 2D silhouettes
    4.
    发明申请
    Constructing heads from 3D models and 2D silhouettes 失效
    从3D模型和2D剪影构建头

    公开(公告)号:US20050031194A1

    公开(公告)日:2005-02-10

    申请号:US10636355

    申请日:2003-08-07

    IPC分类号: G06K9/00 G06T17/00

    CPC分类号: G06K9/00288 G06T17/00

    摘要: A method reconstructs or synthesizes heads from 3D models of heads and 2D silhouettes of heads. A 3D statistical model is generated from multiple real human heads. The 3D statistical model includes a model parameter in the form of basis vectors and corresponding coefficients. Multiple 2D silhouettes of a particular head are acquired using a camera for example. The 3D statistical model is fitted to multiple 2D silhouettes to determine a particular value of the model parameter corresponding to the plurality of 2D silhouettes. Then, the 3D statistical model is rendered according to the particular value of the model parameter to reconstruct the particular head.

    摘要翻译: 一种方法从头部的3D模型和头部的2D轮廓重建或合成头部。 一个3D统计模型是从多个真人脑中产生的。 3D统计模型包括基矢量和对应系数形式的模型参数。 使用相机例如获取特定头部的多个2D轮廓。 将3D统计模型拟合到多个2D轮廓以确定对应于多个2D轮廓的模型参数的特定值。 然后,根据模型参数的特定值来渲染3D统计模型以重建特定的头部。

    Method for determining optimal viewpoints for 3D face modeling and face recognition
    7.
    发明授权
    Method for determining optimal viewpoints for 3D face modeling and face recognition 有权
    用于确定3D脸部建模和面部识别的最佳视点的方法

    公开(公告)号:US07426292B2

    公开(公告)日:2008-09-16

    申请号:US10836004

    申请日:2004-04-30

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00288 G06T17/00

    摘要: A method determines an optimal set of viewpoints to acquire a 3D shape of a face. A view-sphere is tessellated with a plurality of viewpoint cells. The face is at an approximate center of the view-sphere. Selected viewpoint cells are discarded. The remaining viewpoint cells are clustered to a predetermined number of viewpoint cells according to a silhouette difference metric. The predetermined number of viewpoint cells are searched for a set of optimal viewpoint cells to construct a 3D model of the face.

    摘要翻译: 一种方法确定获得面部3D形状的最佳视点集合。 用多个视点单元镶嵌视野球。 脸部位于视野球的大致中心。 所选视点单元被丢弃。 根据剪影差异度量,剩余的视点单元被聚集到预定数量的视点单元。 搜索预定数量的视点单元以获得一组最佳视点单元,以构造面部的3D模型。

    Method for determining optimal viewpoints for 3D face modeling and face recognition
    8.
    发明申请
    Method for determining optimal viewpoints for 3D face modeling and face recognition 有权
    用于确定3D脸部建模和面部识别的最佳视点的方法

    公开(公告)号:US20050031196A1

    公开(公告)日:2005-02-10

    申请号:US10836004

    申请日:2004-04-30

    IPC分类号: G06K9/00 G06T17/00

    CPC分类号: G06K9/00288 G06T17/00

    摘要: A method determines an optimal set of viewpoints to acquire a 3D shape of a face. A view-sphere is tessellated with a plurality of viewpoint cells. The face is at an approximate center of the view-sphere. Selected viewpoint cells are discarded. The remaining viewpoint cells are clustered to a predetermined number of viewpoint cells according to a silhouette difference metric. The predetermined number of viewpoint cells are searched for a set of optimal viewpoint cells to construct a 3D model of the face.

    摘要翻译: 一种方法确定获得面部3D形状的最佳视点集合。 用多个视点单元镶嵌视野球。 脸部位于视野球的大致中心。 所选视点单元被丢弃。 根据剪影差异度量,剩余的视点单元被聚集到预定数量的视点单元。 搜索预定数量的视点单元以获得一组最佳视点单元,以构造面部的3D模型。

    Method for comparing features extracted from images of fingerprints
    9.
    发明授权
    Method for comparing features extracted from images of fingerprints 失效
    用于比较从指纹图像中提取的特征的方法

    公开(公告)号:US07986820B2

    公开(公告)日:2011-07-26

    申请号:US10087409

    申请日:2001-10-19

    申请人: Baback Moghaddam

    发明人: Baback Moghaddam

    CPC分类号: G06K9/00087

    摘要: Features are extracted from a test and reference image to generate a test and reference record. Each feature has a location, and orientation, and furthermore, the features of the reference records also have associated weights. The features of the test record are approximately aligned with the features of the reference record. Then, differences between the locations and orientations of the features of the reference record and the features of the test record are measured, and the weights of all features of the reference record that are less than a predetermined difference when compared with the features of the test record are summed to determine a similarity score that the test record matches the reference record.

    摘要翻译: 从测试和参考图像中提取特征以产生测试和参考记录。 每个特征具有位置和方向,此外,参考记录的特征也具有相关联的权重。 测试记录的特征大致与参考记录的特征对齐。 然后,测量参考记录的特征的位置和取向与测试记录的特征之间的差异,并且与测试的特征相比,参考记录的所有特征的权重小于预定的差异 记录相加以确定测试记录与参考记录匹配的相似性得分。

    Spectral method for sparse principal component analysis
    10.
    发明申请
    Spectral method for sparse principal component analysis 审中-公开
    稀疏主成分分析的光谱法

    公开(公告)号:US20070156471A1

    公开(公告)日:2007-07-05

    申请号:US11289343

    申请日:2005-11-29

    IPC分类号: G06F9/44 G06F17/50 G06Q40/00

    摘要: A method maximizes a candidate solution to a cardinality-constrained combinatorial optimization problem of sparse principal component analysis. An approximate method has as input a covariance matrix A, a candidate solution, and a sparsity parameter k. A variational renormalization for the candidate solution vector x with regards to the eigenvalue structure of the covariance matrix A and the sparsity parameter k is then performed by means of a sub-matrix eigenvalue decomposition of A to obtain a variance maximized k-sparse eigenvector x that is the best possible solution. Another method solves the problem by means of a nested greedy search technique that includes a forward and backward pass. An exact solution to the problem initializes a branch-and-bound search with an output of a greedy solution.

    摘要翻译: 一种方法将候选解最大化为稀疏主分量分析的基数约束组合优化问题。 近似方法具有协方差矩阵A,候选解和稀疏参数k作为输入。 然后通过A的子矩阵特征值分解来执行关于协方差矩阵A的特征值结构和稀疏参数k的候选解矢量x的变分重归一化,以获得方差最大化的k-稀疏特征向量x,其中 是最好的解决方案。 另一种方法通过嵌套的贪婪搜索技术来解决问题,该技术包括前进和后退。 问题的确切解决方案使用贪心解决方案的输出初始化分支搜索。