Abstract:
A radiological system includes an image pick-up chain which includes an image processor having at an N-output, at which images having a number of lines which is standard, and an H-output for an H-image having a higher number of lines than the standard image. A video recorder is connectable to the N-output, an H-image playback unit is connectable to the H-output. The video recorder is in the image transmission chain, and has an output connected through an up-scan standards converter to a switch, by means of which the H-image playback unit can be connected to an output of the up-scan standards converter.
Abstract:
A telerecording system for producing x-ray images, having an x-ray image intensifier video chain which includes a semiconductor image converter, has a detector which recognizes blooming in the semiconductor image converter and which given blooming, causes at least two x-ray images of different brightness to be acquired by the semiconductor image converter. One of the images is exposed attenuated in comparison to the other so that no blooming ensues. Image signals from the two x-ray images are then superimposed in a mixer unit and the resulting image is displayed.
Abstract:
An x-ray diagnostics installation has an x-ray image intensifier video chain which includes a semiconductor detector composed of pixels arranged in a matrix, serving as the video pick-up and a detector for identifying the average image brightness at the output luminescence screen of the x-ray image intensifier within a predetermined image region. A first read-out circuit is provided for pixels of a first group in the image, which is operated with a read-out clock at a first frequency, and a second read-out circuit is provided for pixels of a second group distributed over the area of the semiconductor detector, which is operated with a read-out clock at a second frequency. The second frequency is higher than the first frequency. The output signals of the pixels of the second group are supplied to an evaluation circuit, and the output signals of the first group of pixels are supplied to the video chain. Image production parameters, such as image brightness, can be controlled on the basis of the output signals of the second group of pixels.
Abstract:
A radiological system, wherein x-ray images (radiation images) are produced and are converted, through a video chain, for display as a video image, the system having a modulation transfer function, has the capability of influencing the modulation transfer function dependent on ambient light which is present at the display. To that end, a control unit is provided which provides two-dimensional control of the modulation transfer function dependent on illumination which is present in the environment of the display. The control is effected by means of a two-dimensional spatial frequency filter.
Abstract:
In a radiological installation comprising an image pick-up system having a memory for individual images and having an image playback unit, an overall image formed of at least two individual images is capable of being portrayed, the number of lines thereof being at least largely independent of the sum of the number of lines of the individual images. For that purpose, the overall image is compiled line-by-line with a processor controller such that respectively one row of stored picture elements of an individual image forms a section of one line of the overall image, and a corresponding row of stored picture elements of at least one further individual image respectively adjoins this section.
Abstract:
An exemplary embodiment comprises an x-ray tube, an x-ray image intensifier, a television camera, a photographic camera, and a monitor system, which includes a video amplifier, a synchronizing pulse separation stage, a horizontal and a vertical deflection stage, a blanking stage and a picture tube with a deflection unit. The monitor system is provided with a pulse stage for the purpose of generating trace unblanking pulses for the formation of bright horizontal and/or vertical bars bounding the displayed image at the border of the picture tube, which pulse stage is connected with the synchronizing pulse separation stage. The photographic camera is so designed that the displayed images are adjacently photographed so as to avoid light transmitting interstices between the photographed images on the x-ray negative.
Abstract:
In television transmission of medical X-ray photographs and in television X-ray fluoroscopy (e.g. during surgery), where a great brightness contrast range is presented, the illustrated system obtains a blurred video signal representative of the brightness of relatively large regions of the visible light image and adjustably selects high amplitude parts of such signal to synchronously modulate the scanning electron beam of a storage type television camera tube. In this way darker image areas are transmitted with full contrast for reproduction of fine image details as particularly required in medical X-ray technology, while excessively bright areas are attenuated to a desired degree.
Abstract:
A universal X-ray device has a movably suspended holder at which an X-ray radiator and a radiation detector are arranged, with the radiator being mounted so as to be pivotable around at least one axis perpendicular to the plane of the holder, and with the detector being displaceably mounted in the detector plane.
Abstract:
An x-ray diagnostic system, particularly for cardioangiography, has an x-ray and an x-ray image intensifier/video chain or other x-ray image converters, with the x-ray and the x-ray image intensifier being cyclically moved during the production of a number of successive images. The motion of the vessel due to the heartbeat is compensated with a cardiac motion compensation unit in a small image region having an abnormality to be investigated, particularly a stenosis.
Abstract:
In a method for positioning a catheter that has been inserted into a vessel and a device for implementing the method, the road map technique is used, wherein as a mask image, a three-dimensional mask image of the vessel which is composed of number of individual mask images is employed. From these individual mask images, that individual mask image is selected whose exposure direction corresponds optimally to the exposure direction of an instantaneously captured individual image, in order to combine this selected individual mask image with the instantaneously captured mask image and to display the resulting combined image.