摘要:
An automated focusing method for a wavefront sensor that iteratively determines the best optics setting for the wavefront sensor by making objective measurements of the patient's focus without the need for subjective information from the patient.
摘要:
A method for optimizing a prescription for laser-ablation corneal treatment includes receiving a measured correction prescription for a current patient. Next a database of treatment outcomes on a plurality of previously treated patients is accessed. The database contains a desired correction, and an actual correction. A difference between the desired correction and the actual correction represents an over- or undercorrection resulting from surgery. From the difference data is calculated a distribution of data points as a function of correction level. From the data-point distribution is calculated a statistically based offset applicable to the correction prescription for matching actual corrections with desired corrections. From the data-point distribution is calculated a confidence interval of the data using a predetermined confidence level. The statistically based offset is then adjusted based upon the confidence interval to provide an optimized prescription. The adjusted offset is then output for use in performing a refractive procedure.
摘要:
A method for performing wavefront-guided laser surgery on a cornea includes the step of calculating a corneal flap configuration based upon collected anatomical information on an eye and wavefront data on a cornea of the eye. Such data may be collected by, for example, an aberrometer, although this is not intended as a limitation. The calculated configuration is transmitted to a processor in controlling relation to a corneal flap-cutting device. The flap-cutting device is used to create a corneal flap based upon the calculated configuration. A system for performing wavefront-guided laser surgery on a cornea includes a processor for receiving the anatomical information and wavefront data. A software package is adapted to calculate the corneal flap configuration and to control a corneal flap-cutting device to cut a corneal flap commensurate with the calculated corneal flap configuration.
摘要:
A method for improving an accuracy of a prescription for laser-ablation corneal treatment includes the step of receiving a set of raw data comprising Hartmann-Shack image data obtained from a plurality of aberrometer measurements of a patient eye. The Hartmann-Shack data can include, for example, a dot pattern image for each measurement. A set of reconstructed wavefront data calculated from the set of raw data for the plurality of aberrometer measurements is also received. Data on a selected component of the set of raw data and in the set of reconstructed wavefront data are compared. If the selected component data differ more than a predetermined amount between the raw data and the reconstructed wavefront data, the raw data can be further manipulated prior to undertaking laser ablation. In addition, these data are removed from consideration for inclusion in the database of treatment outcomes.
摘要:
A method for optimizing a prescription for laser-ablation corneal treatment includes receiving a measured correction prescription for a current patient. Next a database of treatment outcomes on a plurality of previously treated patients is accessed. The database contains a desired correction, and an actual correction. A difference between the desired correction and the actual correction represents an over- or undercorrection resulting from surgery. From the difference data is calculated a distribution of data points as a function of correction level. From the data-point distribution is calculated a statistically based offset applicable to the correction prescription for matching actual corrections with desired corrections. From the data-point distribution is calculated a confidence interval of the data using a predetermined confidence level. The statistically based offset is then adjusted based upon the confidence interval to provide an optimized prescription. The adjusted offset is then output for use in performing a refractive procedure.
摘要:
A method for improving an accuracy of a prescription for laser-ablation corneal treatment includes the step of receiving a set of raw data comprising Hartmann-Shack image data obtained from a plurality of aberrometer measurements of a patient eye. The Hartmann-Shack data can include, for example, a dot pattern image for each measurement. A set of reconstructed wavefront data calculated from the set of raw data for the plurality of aberrometer measurements is also received. Data on a selected component of the set of raw data and in the set of reconstructed wavefront data are compared. If the selected component data differ more than a predetermined amount between the raw data and the reconstructed wavefront data, the raw data can be further manipulated prior to undertaking laser ablation. In addition, these data are removed from consideration for inclusion in the database of treatment outcomes.
摘要:
A method for assessing a performance of an ablation laser system includes ablating a substrate surface to achieve a predetermined ablation pattern. A beam of light is directed across the ablated substrate, and reflected light is received to detect an actual ablated pattern, which is compared with the predetermined ablated pattern. The resulting comparison is displayed to a user so that the performance of the laser system can be assessed. A system includes a support that is adapted to hold an ablation substrate at a treatment plane. An optical scanner directs a beam of light across the ablated substrate and receives light reflected therefrom to detect an ablated pattern. An analyzer compares the detected with a predetermined ablated pattern. A display in signal communication with the analyzer displays a comparison of the detected and the predetermined ablated pattern.
摘要:
A system and method for converting measured wavefront data into an ablation profile for correcting visual defects includes providing measured wavefront data on an aberrated eye by a method such as known in the art. The measured wavefront data are correlated with accumulated data on previously treated eyes. Next an adjustment is applied to the measured wavefront data based upon the correlating step. This adjustment is used to form adjusted wavefront data for input to a wavefront data correction algorithm to calculate an ablation profile therefrom. The wavefront data correction algorithm may be modeled as, for example, Zernike polynomials with adjusted coefficients.
摘要:
An optical correction system for correcting visual defects of an eye includes a wavefront analyzer responsive to a wavefront emanating from an eye for determining an optical path difference between a reference wave and the wavefront. A converter provides an optical correction based on the path difference and on a radially dependent ablation efficiency. The efficiency correction uses a compensating polynomial of the form A+B&rgr;+C&rgr;2+D&rgr;3+ . . . +X&rgr;n, where &rgr; is a normalized radius measured from a central portion of the cornea, reaching a value of 1 at an outer edge of the optical correction zone. A laser beam is directed to the cornea that has power sufficient for ablating corneal material. The optical correction is achieved by the removal of a selected amount of the corneal material to create a desired corneal shape change based on the optical correction.
摘要:
The present invention is related to an adjustable intraocular lens system comprised of a lens body having an adjustable refractive index and a shield for protecting the lens body from degradation that might otherwise be caused by exposure to particular electromagnetic radiation. More preferably, the present invention is directed to an adjustable intraocular lens system comprised of a lens body and a shield wherein the lens body is formed of a material with a refractive index that can be adjusted by exposure to adjusting electromagnetic radiation (e.g., multiple photon energy) and wherein the shield protects the lens body from degradation that might otherwise be caused by exposure to degrading electromagnetic radiation such as ultraviolet radiation.