摘要:
A composition for cell tracking and molecular imaging containing perfluorocarbon (“PFC”) droplets having a liquid PFC core enclosed within a stabilizing shell and embedded with solid nanoparticles. The solid nanoparticles act as nucleating agents for reducing the activation pressure of the liquid PFC core required to transition the liquid PFC core to a gaseous microbubble thereby permitting the use of more body-temperature stable longer chain PFCs in the liquid PFC core. The improved stability of the PFC droplets with a reduced or limited increase in the activation pressure required due to the nucleating nanoparticles improves the efficacy of using the PFC droplets as phase-change contrast agents.
摘要:
An ultrasonic transducer element can configured to generate ultrasonic energy directed into tissue of a subject and configured to receive a portion of the ultrasonic energy reflected by a target located within the tissue. The ultrasonic transducer can include a surface configured to provide or receive the ultrasonic energy, the surface including an area of greater than or equal to about 4λ2, or the ultrasonic transducer element can be included in an array having a spacing between at least two adjacent ultrasound elements of less than or equal to about ½λ, and the array comprising an aperture that is at least approximately symmetrical in two axes. A three-dimensional representation of one or more of a location, shape, or orientation of at least a portion of the target can be presented via the display.
摘要:
A system and related method for obtaining volumetric cardiac data of a subject. The data is generated by forming a plurality of focused ultrasound images corresponding to a series of ranges, generating myocardial boundary data for each of the plurality of ultrasound images, calculating the area of the region defined by said myocardial boundary data for each of the plurality of ultrasound images, multiplying the area for each of the plurality of ultrasound images by a slice depth corresponding to said ultrasound image to obtain the slice volume of each slice, and summing the slice volumes to obtain a total volume. In an alternative embodiment the system and related method combine an automated volumetric ultrasound system for finding chamber volumes and myocardial thicknesses, with a diagnostic electrocardiogram system to enable simultaneous diagnosis of mechanical and electrical cardiac problems.
摘要:
Images of the heart are formed by using multiple sets of ultrasound data. Each set of data is acquired and processed responsive to a different set of imaging parameters. The imaging parameter sets differ in at least one parameter, such as array position, temporal frequency response or transmit focal depth, so that the images formed using these data sets have, either laterally or axially, different spatial spectra. A set of images is formed responsive to a first imaging parameter set for a first cardiac cycle. Another set of images is formed responsive to a second imaging parameter set for a second cardiac cycle. The two sets of images are temporally aligned so that they correspond to the same set of phases of the cardiac cycle. Since the data acquisition and processing are distributed over multiple cycles of the motion, assuming regular periodic heart cycle, temporal resolution is maintained.
摘要:
A method and system for reducing speckle for two and three-dimensional images is disclosed. For two-dimensional imaging, a one and a half or a two-dimensional transducer is used to obtain sequential, parallel or related frames of elevation spaced data. The frames are compounded to derive a two-dimensional image. For three-dimensional imaging, various pluralities of two-dimensional frames of data spaced in elevation are compounded into one plurality of spaced two-dimensional frames of data. The frames of data are then used to derive a three dimensional set of data, such as by interpolation. Alternatively, the various pluralities are used to derive a three-dimensional set of data. An anisotropic filter is applied to the set of data. The anisotropic filter filters at least along the elevation dimension. In either situation, various displays may be generated from the final three-dimensional set of data. A method and system for adjustably generating two and three-dimensional representations is also disclosed. For three-dimensional imaging, at least two sets of three-dimensional data corresponding respectively to two types of Doppler or B-mode data are generated. The sets of data are then combined. An image or a quantity may be obtained from the combined data. By combining after generating the three-dimensional sets of data, the same data (sets of data) may be combined multiple times pursuant to different relationships. Thus, a user may optimize the image or quantity. Likewise, frames of data may be combined pursuant to different persistence parameters, such as different finite impulse response filter size and coefficients. The frames of data may then be re-combined pursuant to different persistence parameters. Original ultrasound data may also be used to re-generate an imaging using the same ultrasound image processes as used for a previous image. APPENDIX A Filter at Plane Y = - 2 X → [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ] Z ↓ Filter at Plane Y = - 1 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ] Filter at Plane Y = 0 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ] Filter at Plane Y = + 1 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ] Filter at Plane Y = + 2 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ] The filter perform no filtering in the X, Z plane. It filters (low pass) contributions from neighboring elements in only the Y direction. The filter may be implemented as a 1-D low pass filter in the Y-direction [0.2, 0.4, 1.0, 0.4, 0.2]=(a 1×5×1 anisotropic filter).
摘要:
A medical diagnostic ultrasonic imaging system acquires receive beams from spatially distinct transmit beams. The receive beams alternate in type between at least first and second types across the region being imaged. The first and second types of receive beams differ in at least one scan parameter other than transmit and receive line geometry, and can for example differ in transmit phase, transmit or receive aperture, system frequency, transmit focus, complex phase angle, transmit code or transmit gain. Receive beams associated with spatially distinct ones of the transmit beams (including at least one beam of the first type and at least one beam of the second type) are then combined. In this way, many two-pulse techniques, including, for example, phase inversion techniques, synthetic aperture techniques, synthetic frequency techniques, and synthetic focus techniques, can be used while substantially reducing the frame rate penalty normally associated with such techniques.
摘要:
A method and system for identifying constrictions in a vessel are provided. Total blood volume flow is measured at various locations along the vessel. The total volume flow must be conserved. Regions with a different volume flow than expected (e.g. areas associated with a lower volume that violates conservation of flow) are identified as suspicious. Suspicious regions are likely associated with dropout artifact. Actual constrictions are determined from the geometry of images where the region is not suspicious.
摘要:
A method and system for generating transmit pulses for use with an electrostatic transducer in harmonic imaging are provided. The excitation waveforms are pre-distorted to account for the non-linear output of the electrostatic transducer. Additionally, the force on a multiple element electrostatic transducer array is measured. A bias voltage is applied to the electrostatic transducer where the bias voltage is responsive to the measured force.
摘要:
An medical diagnostic ultrasonic image processing method estimates motion between first and second composite ultrasonic images that include both B-mode and Color Doppler information. First and second B-mode images are extracted from the first and second composite ultrasonic images, respectively, and then motion is estimated between the first and second B-mode images. The estimated motion is then used to compose a multi-frame image using at least portions of the composite ultrasonic images or derivatives of the composite ultrasonic images, such as the B-mode images.
摘要:
The preferred embodiments described herein provide a medical diagnostic ultrasonic transducer probe and imaging system for use with a position and orientation sensor. In one preferred embodiment, an ultrasonic transducer probe comprises a position and orientation sensor and a memory device comprising calibration data for the position and orientation sensor. The memory device is adapted to provide the calibration data to a medical diagnostic ultrasound imaging system coupled with the ultrasonic transducer probe. In another preferred embodiment, a medical diagnostic ultrasound imaging system comprises a memory device comprising a plurality of position and orientation sensor calibration data. Each of the plurality of position and orientation sensor calibration data is associated with a respective ultrasonic transducer probe family. In operation, identification of a probe family of an ultrasonic transducer probe is provided to the ultrasound system. The ultrasound system then selects the position and orientation sensor calibration data corresponding to the identified probe family.