摘要:
In at least one embodiment, a controller allows triac-based dimmer to properly function and dim a load whose voltage is regulated by a switching power converter. In at least one embodiment, the switching power converter includes a switch to control voltage conversion of an input voltage to the switching power converter, wherein phase delays are introduced in the input voltage by a triac-based dimmer during a dimming period. In at least one embodiment, the controller is configured to control the switch of the switching power converter to establish an input resistance of the switching power converter during a dimming portion of the input voltage, wherein the input resistance allows the triac-based dimmer to phase modulate a supply voltage to the dimmer so that an output voltage of the dimmer has a substantially uninterrupted phase delay during each half-cycle of the supply voltage during the dimming period.
摘要:
In at least one embodiment, a controller allows triac-based dimmer to properly function and dim a load whose voltage is regulated by a switching power converter. In at least one embodiment, the switching power converter includes a switch to control voltage conversion of an input voltage to the switching power converter, wherein phase delays are introduced in the input voltage by a triac-based dimmer during a dimming period. In at least one embodiment, the controller is configured to control the switch of the switching power converter to establish an input resistance of the switching power converter during a dimming portion of the input voltage, wherein the input resistance allows the triac-based dimmer to phase modulate a supply voltage to the dimmer so that an output voltage of the dimmer has a substantially uninterrupted phase delay during each half-cycle of the supply voltage during the dimming period.
摘要:
A power control system includes a switching power converter and a controller. The controller is configured to detect an over-current condition of an inductor current in the switching power converter using at least one non-inductor-current signal. In at least one embodiment, the switching power converter does not have a resistor or resistor network to sense the inductor current. In at least one embodiment, the controller indirectly determines a state of the inductor current using at least one non-inductor-current signal. Potentially damaging inductor current values that are, for example, greater than a normal maximum value or at a value that causes a discontinuous conduction mode system to operate in continuous conduction mode represent exemplary inductor over-current conditions addressed by one embodiment of the power control system.
摘要:
In at least one embodiment, a controller allows triac-based dimmer to properly function and dim a load whose voltage is regulated by a switching power converter. In at least one embodiment, the switching power converter includes a switch to control voltage conversion of an input voltage to the switching power converter, wherein phase delays are introduced in the input voltage by a triac-based dimmer during a dimming period. In at least one embodiment, the controller is configured to control the switch of the switching power converter to establish an input resistance of the switching power converter during a dimming portion of the input voltage, wherein the input resistance allows the triac-based dimmer to phase modulate a supply voltage to the dimmer so that an output voltage of the dimmer has a substantially uninterrupted phase delay during each half-cycle of the supply voltage during the dimming period.
摘要:
Power control systems generate electromagnetic interference (EMI). In at least one embodiment, a power control system includes a switching power converter and a controller that utilizes a spread spectrum strategy to reduce peak EMI values of the power control system. The controller generates a power regulation, switch control signal to control an input voltage to output voltage conversion by the switching power converter. The controller modulates the period of the control signal in accordance with the spread spectrum strategy. The spread spectrum strategy is an intentional plan to spread the spectrum of the control signal to reduce peak EMI values, and, thus, reduce the potential for degradation in performance, a malfunction, or failure of an electronic circuit caused by the EMI. The controller also modulates a pulse width of the switch control signal in response to modulation of the period of the control signal to provide power factor correction.
摘要:
Power control systems generate electromagnetic interference (EMI). In at least one embodiment, a power control system includes a switching power converter and a controller that utilizes a spread spectrum strategy to reduce peak EMI values of the power control system. The controller generates a power regulation, switch control signal to control an input voltage to output voltage conversion by the switching power converter. The controller modulates the period of the control signal in accordance with the spread spectrum strategy. The spread spectrum strategy is an intentional plan to spread the spectrum of the control signal to reduce peak EMI values, and, thus, reduce the potential for degradation in performance, a malfunction, or failure of an electronic circuit caused by the EMI. The controller also modulates a pulse width of the switch control signal in response to modulation of the period of the control signal to provide power factor correction.
摘要:
A controller is configured to generate one or more power control signals for a lamp to supply power to the lamp from a supply voltage. The controller is further configured to receive customization data encoded in the supply voltage. Thus, in at least one embodiment, the controller receives the customization data via one or more power terminals of the lamp. Phase cut angles in the supply voltage provided to the controller encode the customization data, and each phase cut angle encodes N symbols of data. N is an integer greater than or equal to one (1). In at least one embodiment, the customization data alters the controller from one state to another state in accordance with data represented by phase cuts in the supply voltage that encode the customization data. Examples of customization data include calibration data and configuration data.
摘要:
A controller is configured to generate one or more power control signals for a lamp to supply power to the lamp from a supply voltage. The controller is further configured to receive customization data encoded in the supply voltage. Thus, in at least one embodiment, the controller receives the customization data via one or more power terminals of the lamp. Phase cut angles in the supply voltage provided to the controller encode the customization data, and each phase cut angle encodes N symbols of data. N is an integer greater than or equal to one (1). In at least one embodiment, the customization data alters the controller from one state to another state in accordance with data represented by phase cuts in the supply voltage that encode the customization data. Examples of customization data include calibration data and configuration data.
摘要:
In at least one embodiment, a controller allows triac-based dimmer to properly function and dim a load whose voltage is regulated by a switching power converter. In at least one embodiment, the switching power converter includes a switch to control voltage conversion of an input voltage to the switching power converter, wherein phase delays are introduced in the input voltage by a triac-based dimmer during a dimming period. In at least one embodiment, the controller is configured to control the switch of the switching power converter to establish an input resistance of the switching power converter during a dimming portion of the input voltage, wherein the input resistance allows the triac-based dimmer to phase modulate a supply voltage to the dimmer so that an output voltage of the dimmer has a substantially uninterrupted phase delay during each half-cycle of the supply voltage during the dimming period.
摘要:
An electronic system includes a controller that controls switching in a switching power converter in accordance with a dynamically determined, minimum line voltage switching threshold based on one or more operating parameters of the electronic system. In at least one embodiment, the one or more operating parameters of the electronic system include power utilization of a load. The controller utilizes the dynamically determined, minimum line voltage switching threshold to determine when to enable and disable switching in the switching power converter. Since the controller bases determination of the dynamically determined, minimum line voltage switching threshold on power utilization of the load, the controller operates more efficiently by reducing switching losses while still meeting power demand by the load.