摘要:
A high data rate communication system operating at frequencies greater than 70 MHz and at data rates of about 1.25 Gbps or greater. Preferred embodiments include modulators with a resonant LC circuit including a diode which is back-biased for “off” (i.e., no transmit) and forward biased for “on” (or transmit). The modulator is a part of high performance transceivers for wireless, millimeter wave communications links. A preferred embodiment provides a communication link of more than eight miles which operates within the 71 to 76 GHz portion of the millimeter spectrum and provides data transmission rates of 1.25 Gbps with bit error rates of less than 10−10 . A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth. The transceivers are equipped with antennas providing beam divergence small enough to ensure efficient spatial and directional partitioning of the data channels so that an almost unlimited number of transceivers will be able to simultaneously use the same spectrum. In a preferred embodiment the first and second spectral ranges are 71.8+/−0.63 GHz and 73.8+/−0.63 GHz and the half power beam width is about 0.2 degrees or less. Preferably, a backup transceiver set is provided which would take over the link in the event of very bad weather conditions. In other embodiments especially useful for mobile applications at least one of the transceivers include a GPS locator.
摘要:
A high data rate free space communication link operating at millimeter wave frequency ranges. Links include two transceivers, the first transceiver transmitting at a first frequency range and receiving at a second frequency range and a second transceiver transmitting at the second frequency range and receiving at the first frequency range. Each of the two transceivers has a primary tunable oscillator providing a basic frequency signal that is precisely the same for both transceivers. Preferably the primary tunable oscillator in one of the transceivers, the slave oscillator, is slaved to the primary tunable oscillator, the master oscillator, in the other transceiver and the two transceivers are locked in frequency and phase. Also preferably the master oscillator is frequency controlled to maintain a constant number of wavelengths in the millimeter wave radio beams between the two transceivers, at least for periods of time permitting substantial data transmission without change in the number of wavelengths. In both transceivers a center frequency is generated by frequency multiplication and mixing of harmonics of the basic frequency signal generated by the transceiver's primary tunable oscillator. Preferred embodiments are designed to operate at frequencies above 60 GHz. In a particular preferred embodiment the center frequency for the first transceiver is about 73.5 GHz and the center frequency for the second transceiver is about 83.3 GHz. Embodiments of the present invention include automatic transmit power control, (preferably about 20 db of it, permitting operation at about 1 percent to 100 percent of maximum transmit power) for assuring adequate signal transmission in a wide variety of atmospheric conditions but not excessive power that might interfere with other links at the same frequencies. The narrow beam widths of these transceivers at about 0.5 degrees using a two-foot diameter antenna and the above transmit power control permit a large number of these transceivers to operate in the same region using the same frequencies.
摘要:
An apparatus and method for aligning the antennas of two transceivers of a point-to-point wireless millimeter wave communications link. A narrow band oscillator power source is substituted for the signal transmitting electronics associated with a first antenna and a power detector is substituted for the signal receiving electronics associated with a second antenna. In preferred embodiments after a first alignment procedure is performed, the procedure is repeated with an oscillator power source connected to the second antenna and a power detector connected to the first antenna. In other preferred embodiments the antennas are pre-aligned using a signaling mirror or a narrow beam search light or laser. After the antennas are aligned the transceiver electronics are reconnected. In preferred embodiments the communication link operates within the 92 to 95 GHz portion of the millimeter spectrum and provides data transmission rates in excess of 155 Mbps.
摘要:
Equipment and methods for aligning the antennas of two transceivers of a point-to-point wireless millimeter wave communications link and keeping them aligned. Each of two communicating antennas is equipped with a telescopic camera connected to a processor programmed to recognize landscape images. The processors are programmed to remember the pattern of the landscape as it appears when the antennas are aligned. Each of the cameras then view the landscape periodically or continuously and if the landscape in view changes by more than a predetermined amount a signal is provided to indicate a misalignment. An operator can then take corrective action or alternatively the antenna system can be configured for remote or automatic realignment based of feedback from the camera. In a preferred embodiment, the antennas are initially aligned by substituting a narrow band oscillator power source for the signal transmitting electronics associated with a first antenna and a power detector is substituted for the signal receiving electronics of associated with a second antenna.
摘要:
A point-to-point, wireless, millimeter wave communications link between two stations at least one of which is a mobile station. A millimeter wave transmitter system operating at frequencies higher than 57 GHz with a tracking antenna producing a beam having a half-power beam width of about 2 degrees or less and a millimeter wave receiver also with a tracking antenna having a half-power beam width of about 2 degrees or less. In preferred embodiments each mobile station has a global position system (GPS) and a radio transmitter and both tracking antennas are pointed utilizing GPS information from the mobile station or stations. The GPS information preferably is transmitted via a low frequency, low data rate radio. Each millimeter wave unit is capable of transmitting and/or receiving, through the atmosphere, digital information to/from the other station at rates in excess of 155 million bits per second during normal weather conditions. In preferred embodiments actually built and tested by Applicants digital information has been transmitted at rates of 1.25 gigabits per second. Preferred communication links described here are millimeter wave links operating at frequencies of 71-73 GHz and 74-76 GHz mounted on simple two-axis gimbals. Pointing information of the required accuracy is provided by GPS receivers and standard radio links which send the GPS calculated positions to the millimeter wave systems at the opposite end of the link. In these embodiments there is no need for any complicated closed loop pointing information derived from received signal intensity or phase. On moving platforms locally generated inertial attitude information is combined with the GPS positions to control pointing of the gimbaled transceivers.
摘要:
A millimeter wave radio link in which the transceivers have most of its components fabricated on a single chip or chipset of a small number of semiconductor chips. The chip or chipsets when mass produced is expected to make the price of millimeter wave radios comparable to many of the lower-priced microwave radios available today from low-cost foreign suppliers. Preferred embodiments of the present invention operate in the range of about 3.5 Gbps to more than 10 Gbps. The transceivers of a preferred embodiment are designed to receive binary input data at an input data rate in 10.3125 Gbps and to transmit at a transmit data rate in of 10.3125 Gbps utilizing encoded three-bit data symbols on a millimeter carrier wave at E-Band frequencies. Preferred embodiments include an averaging technique that greatly improves bit error rates. A constellation averaging technique is utilized to improve bit error rates.
摘要:
A point-to-point, wireless, millimeter wave communications link between two stations at least one of which is a mobile station. A millimeter wave transmitter system operating at frequencies higher than 57 GHz with a tracking antenna producing a beam having a half-power beam width of about 2 degrees or less and a millimeter wave receiver also with a tracking antenna having a half-power beam width of about 2 degrees or less. In preferred embodiments each mobile station has a global position system (GPS) and a radio transmitter and both tracking antennas are pointed utilizing GPS information from the mobile station or stations. The GPS information preferably is transmitted via a low frequency, low data rate radio. Each millimeter wave unit is capable of transmitting and/or receiving, through the atmosphere, digital information to/from the other station at rates in excess of 155 million bits per second during normal weather conditions. In preferred embodiments actually built and tested by Applicants digital information has been transmitted at rates of 1.25 gigabits per second. Preferred communication links described here are millimeter wave links operating at frequencies of 71-73 GHz and 74-76 GHz mounted on simple two-axis gimbals. Pointing information of the required accuracy is provided by GPS receivers and standard radio links which send the GPS calculated positions to the millimeter wave systems at the opposite end of the link. In these embodiments there is no need for any complicated closed loop pointing information derived from received signal intensity or phase. On moving platforms locally generated inertial attitude information is combined with the GPS positions to control pointing of the gimbaled transceivers.
摘要:
A passive millimeter wave imaging system that includes at least one millimeter wave frequency scanning antenna and multiple beam formers collecting narrow beams of millimeter wave radiation from a two-dimensional field of view. The collected radiation is amplified and separated into bins corresponding to various vertical and horizontal beam orientations. In a preferred embodiment the beam formers include one phase processor and 192 frequency processors. Two dimensional images of a target are obtained by the simultaneous detection of signal power within each beam and converting it into pixel intensity level at a rate of 30 frames per second.
摘要:
A millimeter wave radio link in which the transceivers have most of its components fabricated on a single chip or chipset of a small number of semiconductor chips. The chip or chipsets when mass produced is expected to make the price of millimeter wave radios comparable to many of the lower-priced microwave radios available today from low-cost foreign suppliers. Preferred embodiments of the present invention operate in the range of about 3.5 Gbps to more than 10 Gbps. The transceivers of a preferred embodiment are designed to receive binary input data at an input data rate in 10.3125 Gbps and to transmit at a transmit data rate in of 10.3125 Gbps utilizing encoded three-bit data symbols on a millimeter carrier wave at E-Band frequencies.
摘要:
A high data rate millimeter wave radio adapted to receive an binary input data at an input data rate in excess of 3.5 Gbps and to transmit at a transmit data rate in excess of 3.5 Gbps utilizing encoded three-bit data symbols on a millimeter carrier wave at a millimeter wave nominal carrier frequency, defining a carrier wavelength and period, in excess of 70 GHz with differential phase-shift keying utilizing eight separate phase shifts. Preferred embodiments of the invention can support many of the high data rate standards including the following group of protocols or standards: SONET OC-96 (4.976 Gbps); 4xGig-E (5.00 Gbps); 5xGig-E (6.25 Gbps); OBSAI RP3-01 (6.144 Gbps); 6xGig-E (7.50 Gbps); Fibre Channel 8GFC (8.5 Gbps); SONET OC-192 (9.952 Gbps); Fibre Channel 10GFC Serial (10.52 Gbps) and 10 GigaBit Ethernet.