摘要:
A single-mask process for fabricating enclosed, micron-scale subsurface cavities in a single crystal silicon substrate includes the steps of patterning the substrate to form vias, etching the cavities through the vias, and sealing the vias. Single cavities of any configuration may be produced, but a preferred embodiment includes closely spaced cavity pairs. The cavities may be separated by a thin membrane, or may be merged to form an enlarged merged cavity having an overhanging bar to which electrical leads may be connected. A three-mask process for fabricating enclosed cavities with electrical contacts and electrical connections is also disclosed.
摘要:
A microfabrication process for making enclosed, subsurface microfluidic tunnels, cavities, channels, and the like within suspended beams includes etching a single crystal silicon wafer to produce trenches defining a beam. The trench walls are oxidized, and the interior of the beam is etched through a channel via on the top of the beam to form a hollow beam with oxide sidewalls. The beam is released, and the via is then sealed to form an enclosed released channel beam.
摘要:
A microfabrication process for making enclosed, subsurface microfluidic tunnels, cavities, channels, and the like within suspended beams includes etching a single crystal silicon wafer to produce trenches defining a beam. The trench walls are oxidized, and the interior of the beam is etched through a channel via on the top of the beam to form a hollow beam with oxide sidewalls. The beam is released, and the via is then sealed to form an enclosed released channel beam,
摘要:
A method for fabricating semiconductor wafers as multiple-depth structure (i.e., having portions of varying height). The method includes patterning a first substrate and bonding a second substrate to the first. This process creates a subsurface patterned layer. Portions of the second substrate may then be etched, exposing the subsurface patterned layer for selective processing. For example, the layered structure may then be repeatedly etched to produce a multiple depth structure. Or, for example, exposed portions of the first substrate may have material added to them to create multiple-depth structures. This method of fabrication provides substantial advantages over previous methods.