摘要:
A general automated method for synthesizing the design of both the topology and parameter values for controllers is described. The automated method automatically makes decisions concerning the total number of signal processing blocks to be employed in the controller, the type of each signal processing block, the topological interconnections between the signal processing blocks, the values of all parameters for the signal processing blocks, and the existence, if any, of internal feedback between the signal processing blocks within the controller. The general automated method can simultaneously optimize prespecified performance metrics (such as minimizing the time required to bring the plant outputs to the desired values as measured by the integral of the time-weighted absolute error or the integral of the squared error), satisfy time-domain constraints (such as overshoot, disturbance rejection, limits on control variables, and limits on state variables), and satisfy frequency domain constraints (bandwidth).
摘要:
A general automated method for synthesizing the design of both the topology and parameter values for controllers is described. The automated method automatically makes decisions concerning the total number of signal processing blocks to be employed in the controller, the type of each signal processing block, the topological interconnections between the signal processing blocks, the values of all parameters for the signal processing blocks, and the existence, if any, of internal feedback between the signal processing blocks within the controller. The general automated method can simultaneously optimize prespecified performance metrics (such as minimizing the time required to bring the plant outputs to the desired values as measured by the integral of the time-weighted absolute error or the integral of the squared error), satisfy time-domain constraints (such as overshoot, disturbance rejection, limits on control variables, and limits on state variables), and satisfy frequency domain constraints (bandwidth).
摘要:
An automated design process and apparatus for use in designing complex structures, such as circuits, to satisfy prespecified design goals, using genetic operations. The present invention uses a population of entities which may be evolved to generate structures that may potentially satisfy the design goals. The behavior of such generated structures is evaluated in view of the design goals, and those structures more closely meeting the design goals are evolved further until a structure is generated that either meets the prespecified design goal or some other process completion criteria. In this manner, a design complex structure may be obtained.
摘要:
The present invention is a genetic programming problem solver that automatically generates computer programs to solve problems. The genetic programming problem solver incorporates architecture-altering operations. In one embodiment, the genetic programming problem solver uses architecture-altering operations for automatically defined functions and loops, together with indexed memory, to generate the resulting computer programs. In a second embodiment, the genetic programming problem solver uses architecture-altering operations of automatically defined function, loops, recursions, and stores to generate the resulting computer programs.