ADAPTIVE TRAINING AND DEPLOYMENT OF SINGLE CHILLER AND CLUSTERED CHILLER FAULT DETECTION MODELS FOR CONNECTED CHILLERS

    公开(公告)号:US20190385070A1

    公开(公告)日:2019-12-19

    申请号:US16198456

    申请日:2018-11-21

    Abstract: A chiller fault prediction system for a building, including one or more memory devices and one or more processors. The one or more memory devices are configured to store instructions to be executed on the one or more processors. The one or more processors are configured to receive chiller data for a plurality of chillers, the chiller data indicating performance of the plurality of chillers. The one or more processors are configured to generate, based on the received chiller data, a plurality of single chiller prediction models and a plurality of cluster chiller prediction models, the plurality of single chiller prediction models generated for each the plurality of chillers and the plurality of cluster chiller prediction models generated for chiller clusters of the plurality of chillers. The one or more processors are configured to label each of the plurality of single chiller prediction models and the plurality of cluster chiller prediction models as an accurately predicting chiller model or an inaccurately predicting chiller model based on a performance of each of the plurality of single chiller prediction models and a performance of each of the plurality of cluster chiller prediction models. The one or more processors are configured to predict a chiller fault with each of the plurality of single chiller prediction models labeled as the accurately predicting chiller models. The one or more processors are configured to predict a chiller fault for each of a plurality of assigned chillers assigned to one of a plurality of clusters labeled as the accurately predicting chiller model.

    AUTOMATIC THRESHOLD SELECTION OF MACHING LEARNING/DEEP LEARNING MODEL FOR ANOMALY DETECTION OF CONNECTED CHILLERS

    公开(公告)号:US20190383510A1

    公开(公告)日:2019-12-19

    申请号:US16198377

    申请日:2018-11-21

    Abstract: A chiller threshold management system for a building, including one or more memory devices and one or more processors. The one or more memory devices are configured to store instructions to be executed on the one or more processors. The one or more processors are configured to determine whether chiller fault data exists in chiller data used to generate a plurality of chiller prediction models. The one or more processors are further configured to generate a first threshold evaluation value for each of the plurality of chiller prediction models using a first evaluation technique in response to a determination that chiller fault data exists in the chiller data, and generate a second threshold evaluation value for each of the chiller prediction models using a second evaluation technique in response to a determination that chiller fault data does not exist in the chiller data. The one or more processors are configured to select a first threshold for each of the plurality of chiller prediction models based on the first threshold evaluation values in response to the determination that chiller fault data exists in the chiller data, and select a second threshold for each of the plurality of chiller prediction models based on the second threshold evaluation values in response to the determination that chiller fault data does not exist in the chiller data.

    ADAPTIVE SELECTION OF MACHINE LEARNING/DEEP LEARNING MODEL WITH OPTIMAL HYPER-PARAMETERS FOR ANOMALY DETECTION OF CONNECTED CHILLERS

    公开(公告)号:US20190384239A1

    公开(公告)日:2019-12-19

    申请号:US16198416

    申请日:2018-11-21

    Abstract: A model management system for a building, including one or more memory devices and one or more processors. The one or more memory devices are configured to store instructions to be executed on the one or more processors. The one or more processors are configured to determine whether chiller fault data exists in chiller data used to generate a plurality of chiller shutdown prediction models. The one or more processors are further configured to generate a first performance evaluation value for each of the plurality of chiller shutdown prediction models using a first evaluation technique in response to a determination that chiller fault data exists in the chiller data, and generate a second performance evaluation value for each of the plurality of chiller shutdown prediction models using a second evaluation technique in response to a determination that chiller fault data does not exist in the chiller data. The one or more processors are configured to select one of the plurality of chiller shutdown prediction models based on the first performance evaluation in response to the determination that chiller fault data exists in the chiller data, and select one of the plurality of chiller shutdown prediction models based on the second performance evaluation in response to the determination that chiller fault data does not exist in the chiller data.

Patent Agency Ranking