摘要:
A means is presented by which two trellis stages can be processes simultaneously and in parallel with one another (e.g., during a single clock cycle) thereby significantly increasing data throughput. Any one or more modules within a REX module can be implemented using a radix-4 architecture to increase data throughput. For example, any or more of a SMU (Survivor Memory Unit), a PED (Path Equivalency Detector), and a RMU (Reliability Measure Unit) can be implemented in accordance with the principles of radix-4 decoding processing.
摘要:
Register exchange network for radix-4 SOVA (Soft-Output Viterbi Algorithm). Two trellis stages are processed simultaneously and in parallel with one another (e.g., during a single clock cycle) thereby significantly increasing data throughput. Any one or more modules within an REX (Register Exchange) module are implemented using a radix-4 architecture to increase data throughput. Any one or more of a SMU (Survivor Memory Unit), a PED (Path Equivalency Detector), and a RMU (Reliability Measure Unit) are implemented in accordance with the principles of radix-4 decoding processing.
摘要:
Quasi-cyclic LDPC (Low Density Parity Check) code construction is presented that ensures no four cycles therein (e.g., in the bipartite graphs corresponding to the LDPC codes). Each LDPC code has a corresponding LDPC matrix that is composed of square sub-matrices, and based on the size of the sub-matrices of a particular LDPC matrix, then sub-matrix-based cyclic shifting is performed as not only a function of sub-matrix size, but also the row and column indices, to generate CSI (Cyclic Shifted Identity) sub-matrices. When the sub-matrix size is prime (e.g., each sub-matrix being size q×q, where q is a prime number), then it is guaranteed that no four cycles will exist in the resulting bipartite graph corresponding to the LDPC code of that LDPC matrix. When q is a non-prime number, an avoidance set can be used and/or one or more sub-matrices can be made to be an all zero-valued sub-matrix.
摘要翻译:提出了准循环LDPC(Low Density Parity Check,低密度奇偶校验)码构造,其中不存在四个周期(例如,在对应于LDPC码的二分图中)。 每个LDPC码具有由平方子矩阵组成的对应的LDPC矩阵,并且基于特定LDPC矩阵的子矩阵的大小,然后基于子矩阵的循环移位不仅作为子函数执行 - 矩阵大小,也是行和列索引,以生成CSI(循环移位标识)子矩阵。 当子矩阵大小为素数(例如,每个子矩阵的大小为q×q,其中q为质数)时,则保证在对应于LDPC码的LDPC码的所得到的二分图中不存在四个周期 那个LDPC矩阵。 当q是非素数时,可以使用回避集合和/或可以使一个或多个子矩阵成为全零值子矩阵。
摘要:
Single CRC polynomial for both turbo code block CRC and transport block CRC. Rather than employing multiple and different generation polynomials for generating CRC fields for different levels within a coded signal, a single CRC polynomial is employed for the various levels. Effective error correction capability is achieved with minimal hardware requirement by using a single CRC polynomial for various layers of CRC encoding. Such CRC encoding can be implemented within any of a wide variety of communication devices that may be implemented within a wide variety of communication systems (e.g., a satellite communication system, a wireless communication system, a wired communication system, and a fiber-optic communication system, etc.). In addition, a single CRC check can be employed within a receiver (or transceiver) type communication device for each of the various layers of CRC of a received signal.
摘要:
LDPC (Low Density Parity Check) codes with corresponding parity check matrices selectively constructed with CSI (Cyclic Shifted Identity) and null sub-matrices. An LDPC matrix corresponding to an LDPC code is employed within a communication device to encode and/or decode coded signals for use in any of a number of communication systems. The LDPC matrix is composed of a number of sub-matrices and may be partitioned into a left hand side matrix and a right hand side matrix. The right hand side matrix may include two sub-matrix diagonals therein that are composed entirely of CSI (Cyclic Shifted Identity) sub-matrices; one of these two sub-matrix diagonals is located on the center sub-matrix diagonal and the other is located just to the left thereof. All other sub-matrices of the right hand side matrix may be null sub-matrices (i.e., all elements therein are values of zero “0”).
摘要:
Flexible rate matching. No constraints or restrictions are placed on a sending communication device when effectuating rate matching. The receiving communication device is able to accommodate received transmissions of essentially any size (e.g., up to an entire turbo codeword that includes all systematic bits and all parity bits). The receiving communication device employs a relatively small-sized memory to ensure a lower cost, smaller sized communication device (e.g., handset or user equipment such as a personal wireless communication device). Moreover, incremental redundancy is achieved in which successive transmissions need not include repeated information therein (e.g., a second transmission need not include any repeated information from a first transmission). Only when reaching an end of a block of bits or codeword to be transmitted, and when wrap around at the end of such block of bits or codeword occurs, would any repeat of bits be incurred within a later transmission.
摘要:
Turbo coding having combined turbo de-padding and rate matching de-padding. An approach is presented by which a singular module is operable to perform both zero bit de-padding and dummy bit de-padding in accordance with turbo encoding. Zero padding can be performed on an input information stream before undergoing turbo encoding. One or more of the 3 outputs from the turbo encoding module (e.g., systematic bits, parity 1 bits, and parity 2 bits) may then undergo dummy bit padding as well. Thereafter, these 3 streams (some or all of which may have undergone dummy bit padding) undergo sub-block interleaving. After all of these operations have taken place, a singular combined de-padding module that can be employed to perform de-padding any zero padded bits and any dummy padded bits from each of the three streams that have undergone the sub-block interleaving.
摘要:
Reduced complexity ARP (almost regular permutation) interleaves providing flexible granularity and parallelism adaptable to any possible turbo code block size. A novel means is presented by which any desired turbo code block size can be employed when only requiring, in only some instances, a very small number of dummy bits. This approach also is directly adaptable to parallel turbo decoding, in which any desired degree of parallelism can be employed. Alternatively, as few as one turbo decoder can be employed in a fully non-parallel implementation as well. Also, this approach allows for storage of a reduced number of parameters to accommodate a wide variety of interleaves.
摘要:
LDPC (Low Density Parity Check) codes with corresponding parity check matrices selectively constructed with CSI (Cyclic Shifted Identity) and null sub-matrices. An LDPC matrix corresponding to an LDPC code is employed within a communication device to encode and/or decode coded signals for use in any of a number of communication systems. The LDPC matrix is composed of a number of sub-matrices and may be partitioned into a left hand side matrix and a right hand side matrix. The right hand side matrix may include two sub-matrix diagonals therein that are composed entirely of CSI (Cyclic Shifted Identity) sub-matrices; one of these two sub-matrix diagonals is located on the center sub-matrix diagonal and the other is located just to the left thereof. All other sub-matrices of the right hand side matrix may be null sub-matrices (i.e., all elements therein are values of zero “0”).
摘要:
LDPC (Low Density Parity Check) codes with corresponding parity check matrices selectively constructed with CSI (Cyclic Shifted Identity) and null sub-matrices. An LDPC matrix corresponding to an LDPC code is employed within a communication device to encode and/or decode coded signals for use in any of a number of communication systems. The LDPC matrix is composed of a number of sub-matrices and may be partitioned into a left hand side matrix and a right hand side matrix. The right hand side matrix may include two sub-matrix diagonals therein that are composed entirely of CSI (Cyclic Shifted Identity) sub-matrices; one of these two sub-matrix diagonals is located on the center sub-matrix diagonal and the other is located just to the left thereof. All other sub-matrices of the right hand side matrix may be null sub-matrices (i.e., all elements therein are values of zero “0”).