Abstract:
A device for forming an optical connection between an optoelectronic device and an optical fiber and for forming an electrical connection between the optoelectronic device and a substrate, a system including the device and materials, and methods of forming the device and system are disclosed. The device for forming an optical connection includes a—light transmission medium and electrical connectors, which are at least partially encapsulated. In addition, the device includes guide grooves configured to receive guide pins from a fiber ribbon connector, such that when the fiber ribbon connector is attached to the device, fibers of the ribbon align with the optoelectronic device via the light transmission medium.
Abstract:
A method of fabricating an interconnect includes forming one or more holes in an anisotropic conductive film on a carrier substrate, filling at least one of the one or more holes with a material capable of transmitting an optical signal, and laminating the anisotropic conductive film on a packaging substrate. An electronic package includes a first substrate, a second substrate, and an interconnect located between the first substrate and the second substrate. The interconnect includes a conductive film for electrically coupling a first terminal formed on the first substrate to a second terminal formed on the second substrate, and one or more optically transmissive units embedded in the conductive film, wherein at least one of the one or more optically transmissive units provides an optical signal path between an optical element on the first substrate and an optical element on the second substrate.
Abstract:
A device for forming an optical connection between an optoelectronic device and an optical fiber and for forming an electrical connection between the optoelectronic device and a substrate, a system including the device and materials, and methods of forming the device and system are disclosed. The device for forming an optical connection includes a—light transmission medium and electrical connectors, which are at least partially encapsulated. In addition, the device includes guide grooves configured to receive guide pins from a fiber ribbon connector, such that when the fiber ribbon connector is attached to the device, fibers of the ribbon align with the optoclectronic device via the light transmission medium.
Abstract:
A device for forming an optical connection between an optoelectronic device and an optical fiber and for forming an electrical connection between the optoelectronic device and a substrate, a system including the device and materials, and methods of forming the device and system are disclosed. The device for forming an optical connection includes a—light transmission medium and electrical connectors, which are at least partially encapsulated. In addition, the device includes guide grooves configured to receive guide pins from a fiber ribbon connector, such that when the fiber ribbon connector is attached to the device, fibers of the ribbon align with the optoelectronic device via the light transmission medium.
Abstract:
A method of fabricating an interconnect includes forming one or more holes in an anisotropic conductive film on a carrier substrate, filling at least one of the one or more holes with a material capable of transmitting an optical signal, and laminating the anisotropic conductive film on a packaging substrate. An electronic package includes a first substrate, a second substrate, and an interconnect located between the first substrate and the second substrate. The interconnect includes a conductive film for electrically coupling a first terminal formed on the first substrate to a second terminal formed on the second substrate, and one or more optically transmissive units embedded in the conductive film, wherein at least one of the one or more optically transmissive units provides an optical signal path between an optical element on the first substrate and an optical element on the second substrate.
Abstract:
An interconnect comprising an anisotropic conductive film and an optically transmissive unit embedded in the anisotropic conductive film. The optically transmissive unit provides an optically transmissive path through the anisotropic conductive film. In an alternative embodiment, an electronic package comprises a first substrate, a second substrate, and an interconnect located between the first substrate and the second substrate. The interconnect comprises an anisotropic conductive film for electrically coupling a first conductive element formed on the first substrate to a second conductive element formed on the second substrate and one or more optically transmissive units embedded in the anisotropic conductive film. At least one of the one or more optically transmissive units couples an optical signal path on the first substrate to an optical receiver on the second substrate.
Abstract:
An optical de-multiplexer (de-MUX) that includes an optical device that images and diffracts an optical signal using a reflective geometry is described, where a free spectral range (FSR) of the optical device associated with a given diffraction order abuts FSRs associated with adjacent diffraction orders. Moreover, the channel spacings within diffraction orders and between adjacent diffraction orders are equal to the predefined channel spacing associated with the optical signal. As a consequence, the optical device has a comb-filter output spectrum, which reduces a tuning energy of the optical device by eliminating spectral gaps between diffraction orders of the optical device.
Abstract:
In an MCM, an optical signal is conveyed by an optical waveguide disposed on a surface of a first substrate to an optical coupler having a vertical facet. This optical coupler has an optical mode that is different than the optical mode of the optical waveguide. For example, the spatial extent of the optical mode associated with the optical coupler may be larger, thereby reducing optical losses and sensitivity to alignment errors. Then, the optical signal is directly coupled from the vertical facet to a facing vertical facet of an identical optical coupler on another substrate, and the optical signal is conveyed in another optical waveguide disposed on the other substrate.
Abstract:
A chip assembly configuration includes an substrate with an integrated circuit on one side and a conversion mechanism on the other side. The integrated circuit and the conversion mechanism are electrically coupled by a short electrical transmission line through the substrate. Moreover, the conversion mechanism converts signals between an electrical and an optical domain, thereby allowing high-speed communication between the integrated circuit and other components and devices using optical communication (for example, in an optical fiber or an optical waveguide).
Abstract:
An optical de-multiplexer (de-MUX) that includes an optical device that images and diffracts an optical signal using a reflective geometry is described, where a free spectral range (FSR) of the optical device associated with a given diffraction order abuts FSRs associated with adjacent diffraction orders. Moreover, the channel spacings within diffraction orders and between adjacent diffraction orders are equal to the predefined channel spacing associated with the optical signal. As a consequence, the optical device has a comb-filter output spectrum, which reduces a tuning energy of the optical device by eliminating spectral gaps between diffraction orders of the optical device.