摘要:
Disclosed is a highly integrated and flexible system for vending products and services to consumers. The system receives information in advance of the vend by having the consumer insert an identification (ID) card, preferably a driver's license, into a point-of-purchase terminal (referred to as an OSU device). The OSU device preferably contains an Optical Scanning Unit (OSU), capable of scanning the textual information on the ID card. In one embodiment, the scanned information is compared against optical templates present in the system to discern or verify the information on the ID card, and is then used by the system to enable or disable the vending transaction, and/or to allow access to several preregistered system accounts.
摘要:
A method of magnetic encoding of credit instruments having a strip form magnetic recording medium provides at least one data field on the strip. First and second magnetic field orientations are selected for recordation on the medium of successive, adjacent bit regions in an alternating field orientation pattern with the transition between such orientations defining the transition from one bit region to the next, signalling the initiation of a recorded bit representing either a binary "1" or a binary "0". A first bit region length d.sub.1 for representing one of the binary values "0" and a second bit region length d.sub.2 for representing the other binary value as well as the ratio of d.sub.1 /d.sub.2 are selected, with d.sub.1 /d.sub.2 being from about 0.1 to about 0.5. Thus, the magnetic field transition between adjacent bit regions signals a binary bit and the length of each bit region represents its binary value. Data is recorded in binary format on the medium in one or more data fields using the bit length d.sub.1 and d.sub.2 and ratio d.sub.1 /d.sub.2 so selected. The length of the data fields depends upon the actual value of the data so recorded. The variable data field length assures against jackpotting by unauthorized masking of one of multiple data fields.
摘要:
A reader-writer for magnetic cards substantially reduces "jitter" or chattering vibrations which otherwise imperil the accuracy of the read-write functions. The read-write head is itself mounted rigidly for operating while the magnetic card passes along a planar tray surface. A soft rubber anvil roll is mounted directly opposite, for free idling rotation on the same shaft which impels a rubber driving wheel.In contrast with conventional constructions using a spring-mounted head or anvil, the present rigidly mounted head in combination with the free idling soft anvil roll avoids the generation of, and damps out, vibrations, which otherwise might follow from exciting forces such as irregularities in driving friction. The greatly improved accuracy makes feasible the use of debit cards, and has unexpectedly reduced head wear.