摘要:
The present invention provides a process for preparing a polymer polyol (PMPO) by alkoxylating a starter compound(s) having active hydrogen atoms in the presence of a double metal cyanide (DMC) catalyst, radical initiator(s) and optionally PMPO stabilizers and simultaneously polymerizing unsaturated monomer(s) with radical initiator(s). The polymer polyols (PMPOs) made by the inventive process may find use in the preparation of polyurethane foams and elastomers,
摘要:
The present invention provides a process for preparing a polymer polyol (PMPO) by alkoxylating a starter compound(s) having active hydrogen atoms in the presence of a double metal cyanide (DMC) catalyst, radical initiator(s) and optionally PMPO stabilizers and simultaneously polymerizing unsaturated monomer(s) with radical initiator(s). The polymer polyols (PMPOs) made by the inventive process may find use in the preparation of polyurethane foams and elastomers.
摘要:
The present invention provides a process for preparing a polymer polyol (PMPO) by alkoxylating a starter compound(s) having active hydrogen atoms in the presence of a double metal cyanide (DMC) catalyst, radical initiator(s) and optionally PMPO stabilizers and simultaneously polymerizing unsaturated monomer(s) with radical initiator(s). The polymer polyols (PMPOs) made by the inventive process may find use in the preparation of polyurethane foams and elastomers.
摘要:
The present invention provides a reaction system for the preparation of a fiber reinforced composite according to the pultrusion process made from continuous fiber reinforcing material and an immiscible polyurethane formulation containing a polyisocyanate component including at least one polyisocyanate and an isocyanate-reactive component including at least one isocyanate-reactive compound. The inventive polyurethane formulations and improved pultrusion processes offer better processing and may yield better reinforced composites.
摘要:
The present invention provides a reaction system for the preparation of a fiber reinforced composite according to the pultrusion process made from continuous fiber reinforcing material and a polyurethane formulation containing a polyisocyanate component including at least one polyisocyanate and an isocyanate-reactive component containing at least one double metal cyanide (“DMC”)-catalyzed polyol. The inventive polyurethane formulations and improved pultrusion processes offer better processing and may yield better reinforced composites.
摘要:
Polyacrylate graft-polyols are found to be homogeneous liquids useful as dispersants in vinyl polymer polyols. The novel polyacrylate graft-polyols are made by polymerizing at least one acrylate monomer in a polyol where the resultant polyacrylate is soluble in the polyol used. The polyol may be a polyoxyalkylene polyether polyol. No copolymer or unsaturated polyol is required to make vinyl polymer polyols having high styrene/acrylonitrile ratios, good stability and improved viscosity properties when these polyacrylate graft-polyol dispersants are employed. The vinyl polymer polyols are in turn useful in reactions with polyisocyanates in the presence of suitable catalysts to make polyurethane products.
摘要:
Stable, fluid polymer polyols made by the free radical polymerization of a monomer mixture of an .alpha.,.beta.-ethylenically unsaturated dicarboxylic acid anhydride and a copolymerizable monomer in an organic polyol medium of secondary hydroxyl terminated polyol are disclosed. In one embodiment, the polymer polyols form stable, acrylonitrile-free dispersions.
摘要:
Very low viscosity polymer polyols having high styrene/acrylonitrile ratios and good stability may be achieved by the use of epoxy modified polyols as dispersants. The epoxy modified polyols useful as dispersants may be made by one of three methods: (1) adding the epoxy resin internally to the modified polyol, (2) capping or coupling a polyol not containing an epoxy resin with such a resin, and (3) providing the epoxy resin both internally to the polyol and as a cap or coupler. Epoxy modified polyols having a hydroxyl to epoxy ratio of about 8 or less, made by one of these techniques, are superior dispersants and provide polymer polyols having higher styrene contents, and improved stability and viscosity properties. In one aspect, the epoxy modified polyols contain a significant amount of high moleular weight polyol adducts; generally from about 5 to about 30 wt. % of materials having a GPC molecular weight of greater than 100,000; and at least greater than 80,000. Base polyols unmodified with an epoxy resin are used to make the polymer polyols.
摘要:
Low viscosity polymer polyol polyols having high styrene/acrylonitrile ratios and good stability may be achieved by the use of a high molecular weight (HMW) dispersant polyol comprising less than 5 wt. % of the total polyol component of the polymer polyol. The HMW dispersant should have a molecular weight higher than about 6000. Preferably, a semi-batch reactor is used, and a relatively high concentration of the HMW dispersant is initially charged to the reactor, relative to the portion of base polyol, which has a molecular weight of less than 4000.
摘要:
The present invention relates to a polyether carbonate polyol made by copolymerizing a starter molecule with carbon dioxide, at a pressure ranging from about 10 psia to about 2,000 psia, and an alkylene oxide, at a temperature ranging from about 50° C. to about 190° C. and in the presence of from about 0.001 wt. % to about 0.2 wt. % of a substantially non-crystalline double metal cyanide (DMC) catalyst, wherein the polyol has an incorporated carbon dioxide content of from about 1 wt. % to about 40 wt. %, wherein the ratio of cyclic carbonate by-product to total carbonate is less than about 0.3 and wherein the weight percentages are based on the weight of the polyol. The inventive polyether carbonate polyols may find use in producing polyurethane foams, elastomers, coatings, sealants and adhesives with improved properties.