摘要:
A method and apparatus for intrastromal refractive surgery is disclosed wherein tissue at selected locations within the stroma of the cornea is photoablated using a pulsed laser beam. The apparatus includes an optical system for forming a shaped laser beam having a waist at a predetermined distance from the optical system. The pulse duration and pulse energy of the laser beam are selected to cause ablation to occur in front of the waist (i.e. between the waist and the optical system). To achieve this, a pulse energy is used that exceeds the minimum pulse energy required for ablation at the waist. By ablating in front of the waist, a relatively large ablation zone (per pulse) is created (compared to ablation at the waist). Furthermore, while the laser is scanned through the cornea to effectuate a refractive change, the optical system maintains a uniform waist for the laser beam.
摘要:
A system for spatially stabilizing a base point on the optical axis of a patient's eye, for photoablation of the cornea, includes an optical element for identifying the base point. The system also includes an illumination source which is a fixation point for the eye. Movement of the illumination source induces a saccadic movement of the eye wherein the optical axis of the eye moves from a first orientation to a second orientation. Following the saccadic movement of the eye there is a latency period during which the base point, and hence the eye, is substantially stabilized. Movement of the light source is timed to coincide the latency period with the resting period of the patient's heartbeat sequence, and the relaxation period of the patient's respiration cycle. During the latency period, photoablation is accomplished by directing a train of laser pulses from a laser source into the corneal tissue.
摘要:
A closed-loop control system for altering the optical characteristics of a patient's cornea includes an algorithm for predicting the shape of the cornea after one or more gas bubbles resulting from intrastromal photoablation have collapsed. Patient data can be used as an input for the algorithm, which is then run to prepare an initial treatment plan for a corneal alteration. The initial plan typically includes a plurality of intrastromal photoablation locations and corresponding ablation energies. After photoablation of plan location(s) and before the resulting bubbles collapse, a real-time wavefront shape for light passing through the cornea is measured. The wavefront is then used in the algorithm to predict a post bubble collapse cornea shape and to generate an updated treatment plan. The procedure then continues by ablating location(s) identified in the updated treatment plan. Wavefront measurement and plan updating can be repeated as many times as desired.
摘要:
Defocus and astigmatism compensation methods and apparatuses for use in an aberration measurement system. The apparatuses including reflectors for altering the optical distance between a pair of lenses passing a wavefront without changing the physical distance between the lenses, thereby compensating for defocus in the wavefront; and cylindrical mirrors for adding and removing curvature from a curved wavefront, thereby compensating for astigmatism in the wavefront. The methods including passing a wavefront having defocus through a first lens on a first path, reflecting the wavefront from the first path to a second path, reflecting the wavefront from the second path to a third path, and passing the wavefront through a second lens as a defocus compensated wavefront; and passing a wavefront through first and second cylindrical lens, and orienting the first and second cylindrical lenses with respect to the wavefront and to one another to compensate for astigmatism in the wavefront.
摘要:
A device and method for aberration-free imaging of the fundus of the human eye includes a light source, an active mirror for directing light from the light source to and from the fundus and imaging units for viewing the fundus. A sensor compares the wavefront reflected from the eye with an aberration-free wavefront to establish an error signal, and the error signal is used to program the active mirror to remove aberrations from the reflected light. Importantly, all of this is done by focusing the light to a focal spot on the fundus which has three dimensional volumetric measurements, i.e. point spread function (PSF), of as small as approximately 2 &mgr;m×2 &mgr;m×20 &mgr;m. The imaging units include an ellipsometer and a fluoroscope, and the light source can be a laser diode or an AP-diode.
摘要:
An energy (i.e. laser) beam directed to a photoresist layer is scanned in a first direction through lines progressively displaced in a second coordinate direction. In this way, stripe areas of a wafer are exposed sequentially in a first direction with a thickness dependent upon the size of the laser spot focussed on the beam. The beam scanning rate is adjustable to obtain a time coincidence between the occurrence of markers in a computer and the scanning of a particular position in each line. The beam is modulated during the scan to inscribe a pattern on the layer. The beam is focussed on, and reflected from, the photoresist layer. The reflection is used to maintain the focussing of the beam on the layer by adjusting individual elements in an active mirror in accordance with the reflected beam characteristics. The beam may be split into a plurality of beams displaced from one another in the first direction by providing associated pairs of spherical facets in a lens system and directing portions of the beam between the facets in each pair. Such beams are synchronously scanned to increase the scanning frequency. A second beam with different characteristics than the first beam may be scanned asynchronously (e.g. a reduced speed) relative to the first beam and may be focussed on the photoresist layer in a manner similar to that described above. Light reflected in the second beam from the layer is used to adjust the characteristics of the individual elements in the active mirror so as to maintain the beam focussed on the photoresist layer.
摘要:
A system for treating age-related macular degeneration includes an agent with non-centro symmetric molecules_for marking a region of diseased tissue. An optical assembly focuses the laser beam to a plurality of focal points in the region of diseased tissue, each focal point having a volumetric measurement of about 2 μm×2 μm×20 μm. Due to an increased concentration of photons in the relatively small volume of each focal point, two photons interact with a single molecule of the marking agent, within a very short interval of time (e.g. 10−13 sec). The resultant excited electron state (e.g. 3 eV) is sufficient to induce the marking agent to convert oxygen in a manner that causes the oxygen to kill the diseased tissue. Also, an interaction between photons and a non-centro symmetric molecule in the marking agent will cause a Second Harmonic Generation (SHG) response that can be used for imaging purposes.
摘要:
A closed-loop control system for altering the optical characteristics of a patient's cornea includes an algorithm for predicting the shape of the cornea after one or more gas bubbles resulting from intrastromal photoablation have collapsed. Patient data can be used as an input for the algorithm, which is then run to prepare an initial treatment plan for a corneal alteration. The initial plan typically includes a plurality of intrastromal photoablation locations and corresponding ablation energies. After photoablation of plan location(s) and before the resulting bubbles collapse, a real-time wavefront shape for light passing through the cornea is measured. The wavefront is then used in the algorithm to predict a post bubble collapse cornea shape and to generate an updated treatment plan. The procedure then continues by ablating location(s) identified in the updated treatment plan. Wavefront measurement and plan updating can be repeated as many times as desired.
摘要:
A closed-loop control system for the intrastromal photoablation of tissue includes an active mirror for individually directing the component beams of a diagnostic laser beam to a focal point on the retina of an eye. The reflected beam is analyzed to identify a distorted wavefront indicative of required corneal corrections, and an induced wavefront indicative of optical aberrations introduced by bubbles formed during tissue ablation. A comparator alters the induced wavefront with a desired wavefront to create a rectified wavefront, and a comparator compares the rectified wavefront with the distorted wavefront to create error signals. The error signals are then used to operate the active mirror and to control an ablation laser until the absence of error signals indicate the required stromal tissue has been photoablated.
摘要:
Apparatuses and methods for improving aberration determination capabilities, providing corrective prescription verification, and allowing binocular vision correction in ophthalmic wavefront measuring devices. (1) Improved aberration determination capabilities are achieved through input beam modification which includes sensing an image in a wavefront emanating from an eye in response to an input beam with a sensor and then modifying the input beam with an adaptive optical device based on the sensed information. (2) Corrective prescription verification includes modifying an image with an adaptive optical element to produce a corrected image at the patients eye. (3) Binocular vision correction for a pair of eyes includes measuring the aberrations of one eye with a first ophthalmic wavefront measuring device and measuring the aberration produced by the other eye with a second ophthalmic wavefront measuring device substantially simultaneously.