摘要:
A controller includes a voltage determination module, a bus voltage command module, and a power factor correction (PFC) control module. The voltage determination module determines a desired direct current (DC) bus voltage for a DC bus electrically connected between a PFC module and an inverter power module that drives a compressor motor. The voltage determination module determines the desired DC bus voltage based on at least one of torque of the compressor motor, speed of the compressor motor, output power of the inverter power module, and drive input power. The bus voltage command module determines a commanded bus voltage based on the desired DC bus voltage. The PFC control module controls the PFC module to create a voltage on the DC bus that is based on the commanded bus voltage.
摘要:
A controller includes a voltage determination module, a bus voltage command module, and a power factor correction (PFC) control module. The voltage determination module determines a desired direct current (DC) bus voltage for a DC bus electrically connected between a PFC module and an inverter power module that drives a compressor motor. The voltage determination module determines the desired DC bus voltage based on at least one of torque of the compressor motor, speed of the compressor motor, output power of the inverter power module, and drive input power. The bus voltage command module determines a commanded bus voltage based on the desired DC bus voltage. The PFC control module controls the PFC module to create a voltage on the DC bus that is based on the commanded bus voltage.
摘要:
A BPM or SRM electric motor (M) is supplied bus current. A PWM inverter (I) uses bus current to commutate the motor by Systematically energizing and de-energizing the motor's windings (W) with the current. The resultant bus current waveshape has characteristics that are a function of a commutation angle between a rotor (T) of the machine and its windings. The waveshape includes the effects of bus ripple or transients. A commutation controller (10) samples the waveshape during each commutation interval to obtain commutation angle information. The controller provides control inputs to an inverter (I) to control commutation angle in response to the sample information. Commutation angle control includes calculating a control variable (I.sub.curve) which is a function of commutation angle. This variable is comprised of sampled data values which are additively combined according to a prescribed formula and which provide a high degree of linearity over a wide range of commutation angles. The controller is further responsive to the motor's impulse response (H.sub.motor (t)) to reject bus ripple effects on the waveshape samples. By employing the control variable and impulse response, the controller provides appropriate frequency (f.sub.out) and voltage (V.sub. out corrected) inputs to the inverter to achieve an optimum commutation angle relationship between the rotor and windings.
摘要:
A system includes a pulse-width modulation (PWM) module, a subtraction module, an error reducing module, and a summing module. The PWM module controls switching of an inverter that powers a motor. The PWM module controls the switching based on a first angle in a first mode and a second angle in a second mode. The subtraction module determines a difference between the first and second angles. The error reducing module (i) stores the difference when a transition from the first mode to the second mode is commanded and (ii) decreases a magnitude of the stored difference to zero. The summing module calculates a sum of the stored difference and the second angle. The PWM module controls the switching based on the sum in the second mode.
摘要:
A system includes a pulse-width modulation (PWM) module, a subtraction module, an error reducing module, and a summing module. The PWM module controls switching of an inverter that powers a motor. The PWM module controls the switching based on a first angle in a first mode and a second angle in a second mode. The subtraction module determines a difference between the first and second angles. The error reducing module (i) stores the difference when a transition from the first mode to the second mode is commanded and (ii) decreases a magnitude of the stored difference to zero. The summing module calculates a sum of the stored difference and the second angle. The PWM module controls the switching based on the sum in the second mode.
摘要:
A motor control system includes a control module, a switching module, and a filtering module. The control module determines output voltages for operating a motor based on a torque demand. The switching module generates switching signals for an inverter that drives the motor. The switching module generates the switching signals based on the output voltages. The switching module generates an out-of-volts (OOV) signal according to a comparison based on the output voltages, a maximum duty cycle, and a voltage of a direct current (DC) bus that provides power to the inverter. The filtering module generates an OOV amount by filtering the OOV signal. The control module selectively limits the torque demand based on the OOV amount.
摘要:
A motor control system includes a control module, a switching module, and a filtering module. The control module determines output voltages for operating a motor based on a torque demand. The switching module generates switching signals for an inverter that drives the motor. The switching module generates the switching signals based on the output voltages. The switching module generates an out-of-volts (OOV) signal according to a comparison based on the output voltages, a maximum duty cycle, and a voltage of a direct current (DC) bus that provides power to the inverter. The filtering module generates an OOV amount by filtering the OOV signal. The control module selectively limits the torque demand based on the OOV amount.
摘要:
A system includes a control module that controls a motor based on a first rotor angle and an angle determination module that generates the first rotor angle. An estimator module determines an estimated rotor angle of the motor. A transition module generates a transition signal in response to convergence of the estimator module. The angle determination module initially generates the first rotor angle based on an open loop angle. In response to the transition signal, the angle determination module switches to generating the first rotor angle based on the estimated rotor angle and an offset value. The offset value is based on a difference between the estimated rotor angle and the open loop angle at the time when the transition signal is generated.
摘要:
A system includes a control module that controls a motor based on a first rotor angle and an angle determination module that generates the first rotor angle. An estimator module determines an estimated rotor angle of the motor. A transition module generates a transition signal in response to convergence of the estimator module. The angle determination module initially generates the first rotor angle based on an open loop angle. In response to the transition signal, the angle determination module switches to generating the first rotor angle based on the estimated rotor angle and an offset value. The offset value is based on a difference between the estimated rotor angle and the open loop angle at the time when the transition signal is generated.
摘要:
Various methods of detecting a found rotor, a lost rotor, a locked rotor and a caught rotor after a power disruption using flux estimates are disclosed. Also disclosed are permanent magnet motor controllers and assemblies suitable for performing one or more of these methods.