Abstract:
A system for transferring preforms to an oven starwheel of a blowmolding manufacturing facility includes a transport mechanism that is constructed and arranged to be able to hold at least one plastic preform member, a first sensor for sensing a transport speed of the oven starwheel, and a controller for controlling movement of the transport mechanism The controller receives input from the first sensor so that it may instruct the transport mechanism to transport a preform to the oven starwheel at a speed that will closely match the speed of the oven starwheel. The controller is also programmed to instruct the transport mechanism to receive preforms from a supply of preforms at a speed that is less than the speed of the oven starwheel. This reduces the potential for jamming at the interface between the preform supply and the transport mechanism.
Abstract:
A leak detection system determines whether a container has a leak or an aperture by attempting to draw a vacuum in the container and determining whether a vacuum has been created in the container. If a vacuum can be created in a container, this indicates that the container has a leak. Conversely if a vacuum cannot be created in the container, this indicates that the container does not have a leak.The leak detection system preferably includes a conveyor system for moving a container and a sensor for sensing the pressure in the interior of the container through an opening in the top of the container. While the sensor is sensing the pressure in the interior of the container, a vacuum pump pulls air from the region around the exterior of the container. If the container has an aperture, a vacuum will be created in the container and will be noted by the sensor. Conversely, if the container does not have an aperture, a vacuum will not be created within the container and the sensor will determine this by noting that the pressure of the container is above a predetermined pressure limit. This sensor determines that the container has an aperture by noting that the vacuum in the container is greater in magnitude than a predetermined pressure limit. The leak detection system of this invention may further include a reject assembly for rejecting a container that is detected by the sensor to have an aperture and a controller for controlling the reject assembly in response to signals from the sensor.
Abstract:
A leak detection system determines whether a container has a leak or an aperture by attempting to draw a vacuum in the container and determining whether a vacuum has been created in the container. If a vacuum can be created in a container, this indicates that the container has a leak. Conversely if a vacuum cannot be created in the container, this indicates that the container does not have a leak. The leak detection system preferably includes a conveyor system for moving a container and a sensor for sensing the pressure in the interior of the container through an opening in the top of the container. While the sensor is sensing the pressure in the interior of the container, a vacuum pump pulls air from the region around the exterior of the container. If the container has an aperture, a vacuum will be created in the container and will be noted by the sensor. Conversely, if the container does not have an aperture, a vacuum will not be created within the container and the sensor will determine this by noting that the pressure of the container is above a predetermined pressure limit. This sensor determines that the container has an aperture by noting that the vacuum in the container is greater in magnitude than a predetermined pressure limit. The leak detection system of this invention may further include a reject assembly for rejecting a container that is detected by the sensor to have an aperture and a controller for controlling the reject assembly in response to signals from the sensor.