Dynamic Image Reconstruction with Tight Frame Learning
    1.
    发明申请
    Dynamic Image Reconstruction with Tight Frame Learning 有权
    动态图像重建与紧帧学习

    公开(公告)号:US20140097845A1

    公开(公告)日:2014-04-10

    申请号:US14027451

    申请日:2013-09-16

    IPC分类号: G01R33/48 G06T5/50

    摘要: A computer-implemented method for learning a tight frame includes acquiring undersampled k-space data over a time period using an interleaved process. An average of the undersampled k-space data is determined and a reference image is generated based on the average of the undersampled k-space data. Next, a tight frame operator is determined based on the reference image. Then, a reconstructed image data is generated from the undersampled k-space data via a sparse reconstruction which utilizes the tight frame operator.

    摘要翻译: 用于学习紧帧的计算机实现的方法包括使用交错处理在一段时间内获取欠采样的k空间数据。 确定欠采样的k空间数据的平均值,并且基于欠采样的k空间数据的平均值生成参考图像。 接下来,基于参考图像确定紧帧运算符。 然后,通过使用紧帧运算符的稀疏重构,从欠采样的k空间数据生成重建的图像数据。

    Dynamic image reconstruction with tight frame learning
    2.
    发明授权
    Dynamic image reconstruction with tight frame learning 有权
    动态图像重建与紧帧学习

    公开(公告)号:US09453895B2

    公开(公告)日:2016-09-27

    申请号:US14027451

    申请日:2013-09-16

    IPC分类号: G01R33/48 G06T5/50 G01R33/561

    摘要: A computer-implemented method for learning a tight frame includes acquiring undersampled k-space data over a time period using an interleaved process. An average of the undersampled k-space data is determined and a reference image is generated based on the average of the undersampled k-space data. Next, a tight frame operator is determined based on the reference image. Then, a reconstructed image data is generated from the undersampled k-space data via a sparse reconstruction which utilizes the tight frame operator.

    摘要翻译: 用于学习紧帧的计算机实现的方法包括使用交错处理在一段时间内获取欠采样的k空间数据。 确定欠采样的k空间数据的平均值,并且基于欠采样的k空间数据的平均值生成参考图像。 接下来,基于参考图像确定紧帧运算符。 然后,通过使用紧帧运算符的稀疏重构,从欠采样的k空间数据生成重建的图像数据。

    Multi-stage magnetic resonance reconstruction for parallel imaging applications
    3.
    发明授权
    Multi-stage magnetic resonance reconstruction for parallel imaging applications 有权
    并行成像应用的多级磁共振重建

    公开(公告)号:US09097780B2

    公开(公告)日:2015-08-04

    申请号:US14054003

    申请日:2013-10-15

    IPC分类号: G06K9/00 G01R33/561

    CPC分类号: G01R33/5611

    摘要: A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space data set. Then, the parallel imaging reconstruction technique is applied to the second incomplete k-space data to determine a plurality of third k-space lines not included in the second incomplete k-space data, thereby yielding a complete k-space data set.

    摘要翻译: 用于重建磁共振图像的计算机实现的方法包括获取包括根据加速因子和一个或多个校准线间隔开的多个第一k空间线的第一不完整k空间数据集。 将并行成像重建技术应用于第一不完整k空间数据以确定未包括在第一不完整k空间数据集中的多个第二k空间线,从而产生第二不完整k空间数据集。 然后,将并行成像重构技术应用于第二不完整k空间数据,以确定不包括在第二不完整k空间数据中的多个第三k空间线,从而产生完整的k空间数据集。

    MULTI-STAGE MAGNETIC RESONANCE RECONSTRUCTION FOR PARALLEL IMAGING APPLICATIONS
    4.
    发明申请
    MULTI-STAGE MAGNETIC RESONANCE RECONSTRUCTION FOR PARALLEL IMAGING APPLICATIONS 有权
    并行成像应用的多级磁共振重建

    公开(公告)号:US20140133724A1

    公开(公告)日:2014-05-15

    申请号:US14054003

    申请日:2013-10-15

    IPC分类号: G06T11/00

    CPC分类号: G01R33/5611

    摘要: A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space data set. Then, the parallel imaging reconstruction technique is applied to the second incomplete k-space data to determine a plurality of third k-space lines not included in the second incomplete k-space data, thereby yielding a complete k-space data set.

    摘要翻译: 用于重建磁共振图像的计算机实现的方法包括获取包括根据加速因子和一个或多个校准线间隔开的多个第一k空间线的第一不完整k空间数据集。 将并行成像重建技术应用于第一不完整k空间数据以确定未包括在第一不完整k空间数据集中的多个第二k空间线,从而产生第二不完整k空间数据集。 然后,将并行成像重构技术应用于第二不完整k空间数据,以确定不包括在第二不完整k空间数据中的多个第三k空间线,从而产生完整的k空间数据集。

    Alternating direction of multipliers method for parallel MRI reconstruction
    8.
    发明授权
    Alternating direction of multipliers method for parallel MRI reconstruction 有权
    并行MRI重建的乘法方法的交替方向

    公开(公告)号:US08879811B2

    公开(公告)日:2014-11-04

    申请号:US13778446

    申请日:2013-02-27

    CPC分类号: G06T11/003 G01R33/5611

    摘要: A method for reconstructing parallel magnetic resonance images includes providing a set of acquired k-space MR image data y, and finding a target MR image x that minimizes ½∥Fv−y∥22+λ∥z∥1 where v=Sx and z=Wx where S is a diagonal matrix containing sensitivity maps of coil elements in an MR receiver array, F is an FFT matrix, W is a redundant Haar wavelet matrix, and λ≧0 is a regularization parameter, by updating x k + 1 = ( μ 1 ⁢ I + μ 3 ⁢ S H ⁢ S ) - 1 ⁡ [ μ 1 ⁢ W H ⁡ ( z k - b z k ) + μ 3 ⁢ S H ⁡ ( v k - b v k ) ] , ⁢ z k + 1 = soft ⁡ ( Wx k + 1 + b z k , 1 μ 1 ) ⁢ ⁢ where soft ⁡ ( x , T ) = { x + T if ⁢ ⁢ x ≤ - T , 0 if ⁢ ⁢  x  ≤ T , x - T if ⁢ ⁢ x ≥ T , ⁢ ⁢ and ⁢ ⁢ v k + 1 = ( F H ⁢ F + μ 3 ⁢ I ) - 1 ⁡ [ F H ⁢ y + μ 3 ⁡ ( Sx k + 1 + b v k ) ] , where k is an iteration counter, μ1 and μ3 are parameters of an augmented Lagrangian function, and bz and bv are dual variables of the augmented Lagrangian.

    摘要翻译: 重建并行磁共振图像的方法包括提供一组获取的k空间MR图像数据y,并找到最小化½|Fv-y‖22+λ‖z‖1的目标MR图像x,其中v = Sx和z = Wx其中S是包含MR接收机阵列中的线圈元件的灵敏度映射的对角矩阵,F是FFT矩阵,W是冗余Haar小波矩阵,并且λ≥0是正则化参数,通过更新xk + 1 =( μ1 I +μ3 SH S) - 1⁡[μ1 WH⁡(zk-bzk)+μ3 SH⁡(vk-bvk)],zk + 1 =软⁡(Wx k + 1 + bzk,1μ1),其中软⁡(x,T)= {x + T,如果üx≤-T,0如果üx≤T,x-T,如果üx≥T ,υ,υνvk + 1 =(FH F +μ3 I)-1 [FH y +μ3⁡(Sx k + 1 + bvk)],其中k是迭代计数器,μ1和 μ3是增强拉格朗日函数的参数,bz和bv是增强拉格朗日的双变量。

    ALTERNATING DIRECTION OF MULTIPLIERS METHOD FOR PARALLEL MRI RECONSTRUCTION
    9.
    发明申请
    ALTERNATING DIRECTION OF MULTIPLIERS METHOD FOR PARALLEL MRI RECONSTRUCTION 有权
    并行MRI重建方法的替代方法

    公开(公告)号:US20130259343A1

    公开(公告)日:2013-10-03

    申请号:US13778446

    申请日:2013-02-27

    IPC分类号: G06T11/00

    CPC分类号: G06T11/003 G01R33/5611

    摘要: A method for reconstructing parallel magnetic resonance images includes providing a set of acquired k-space MR image data y, and finding a target MR image x that minimizes ½∥Fv−y∥22+λ∥z∥1 where v=Sx and z=Wx where S is a diagonal matrix containing sensitivity maps of coil elements in an MR receiver array, F is an FFT matrix, W is a redundant Haar wavelet matrix, and λ≧0 is a regularization parameter, by updating x k + 1 = ( μ 1  I + μ 3  S H  S ) - 1  [ μ 1  W H  ( z k - b z k ) + μ 3  S H  ( v k - b v k ) ] ,  z k + 1 = soft  ( Wx k + 1  b z k , 1 μ 1 )   where soft  ( x , T ) = { x + T if   x ≤ - T , 0 if    x  ≤ T , x - T if   x ≥ T ,   and   v k + 1 = ( F H  F + μ 3  I ) - 1  [ F H  y + μ 3  ( Sx k + 1 + b v k ) ] , where k is an iteration counter, μ1 and μ3 are parameters of an augmented Lagrangian function, and bz and bv are dual variables of the augmented Lagrangian.

    摘要翻译: 重建并行磁共振图像的方法包括提供一组获取的k空间MR图像数据y,并找到最小化½|Fv-y‖22+λ‖z‖1的目标MR图像x,其中v = Sx和z = Wx其中S是包含MR接收器阵列中的线圈元件的灵敏度映射的对角矩阵,F是FFT矩阵,W是冗余Haar小波矩阵,并且λ> = 0是正则化参数,通过更新xk + 1 = (μ1 I +μ3 SH SH) - 1(zk-bzk)+ mu 3 SH(vk-bvk)],zk + 1 =软(Wx k + 1,bzk,1 mu 1)其中软(x,T)= {x + T如果x x = = T,如果x<= T,x - 其中k是迭代,其中k是迭代,其中k是迭代,其中k是迭代,其中k是迭代 计数器,mu1和mu3是增强的拉格朗日函数的参数,bz和bv是增强的拉格朗日的双重变量 ianㄧ。

    IMAGE RECONSTRUCTION USING REDUNDANT HAAR WAVELETS
    10.
    发明申请
    IMAGE RECONSTRUCTION USING REDUNDANT HAAR WAVELETS 有权
    使用冗余HAAR波段的图像重建

    公开(公告)号:US20130121554A1

    公开(公告)日:2013-05-16

    申请号:US13616484

    申请日:2012-09-14

    IPC分类号: G06T11/00

    摘要: A method for image reconstruction includes receiving under-sampled k-space data, determining a data fidelity term of a first image of the under-sampled k-space data in view of a second image of the under-sampled k-space data, wherein a time component separated the first image and the second image, determining a spatial penalization on redundant Haar wavelet coefficients of the first image in view of the second image, and optimizing the first image according the data fidelity term and the spatial penalization, wherein the spatial penalization selectively penalizes temporal coefficients and an optimized image of the first image is output.

    摘要翻译: 一种用于图像重构的方法包括:接收未被采样的k空间数据,鉴于未被采样的k空间数据的第二图像,确定未被采样的k空间数据的第一图像的数据保真度项,其中 时间分量分离第一图像和第二图像,根据第二图像确定第一图像的冗余Haar小波系数的空间惩罚,以及根据数据保真度项和空间惩罚优化第一图像,其中空间 惩罚性选择性地惩罚时间系数,并且输出第一图像的优化图像。