摘要:
A method of image reconstruction for a magnetic resonance imaging (MRI) system having a plurality of coils includes obtaining k-space scan data captured by the MRI system, the k-space scan data being representative of an undersampled region over time, determining a respective coil sensitivity profile for the region for each coil of the plurality of coils, and iteratively reconstructing dynamic images for the region from the k-space scan data via an optimization of a minimization problem. The minimization problem is based on the determined coil sensitivity profiles and redundant Haar wavelet transforms of the dynamic images.
摘要:
A method for estimating a coil sensitivity map for a magnetic resonance (MR) image includes providing (61) a matrix A of sliding blocks of a 2D image of coil calibration data, calculating (62) a left singular matrix V∥ from a singular value decomposition of A corresponding to τ leading singular values, calculating (63) P=V∥V∥H, calculating (64) a matrix S that is an inverse Fourier transform of a zero-padded matrix P, and solving (65) MHcr=(Sr)Hcr for cr, where cr is a vector of coil sensitivity maps for all coils at spatial location r, and M ( ( 1 1 … 1 0 0 … 0 … … … 0 0 … 0 ) ( 0 0 … 0 1 1 … 1 … … … 0 0 … 0 ) … ( 0 0 … 0 0 0 … 0 … … … 1 1 … 1 ) ) .
摘要:
A method for estimating a coil sensitivity map for a magnetic resonance (MR) image includes providing a matrix A of sliding blocks of a 3D image of coil calibration data, calculating a left singular matrix V∥ from a singular value decomposition of A corresponding to τ leading singular values, calculating P=V∥V∥H, calculating a matrix S that is an inverse Fourier transform of a zero-padded matrix P, and solving MHcr=(Sr)Hcr for cr, where cr is a vector of coil sensitivity maps for all coils at spatial location r, and M = ( ( 1 1 … 1 0 0 … 0 … … … 0 0 … 0 ) ( 0 0 … 0 1 1 … 1 … … … 0 0 … 0 ) … ( 0 0 … 0 0 0 … 0 … … … 1 1 … 1 ) ) .
摘要:
A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space data set. Then, the parallel imaging reconstruction technique is applied to the second incomplete k-space data to determine a plurality of third k-space lines not included in the second incomplete k-space data, thereby yielding a complete k-space data set.
摘要:
A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space data set. Then, the parallel imaging reconstruction technique is applied to the second incomplete k-space data to determine a plurality of third k-space lines not included in the second incomplete k-space data, thereby yielding a complete k-space data set.
摘要:
A method for image reconstruction includes receiving under-sampled k-space data, determining a data fidelity term of a first image of the under-sampled k-space data in view of a second image of the under-sampled k-space data, wherein a time component separated the first image and the second image, determining a spatial penalization on redundant Haar wavelet coefficients of the first image in view of the second image, and optimizing the first image according the data fidelity term and the spatial penalization, wherein the spatial penalization selectively penalizes temporal coefficients and an optimized image of the first image is output.
摘要:
A method for image reconstruction includes receiving under-sampled k-space data, determining a data fidelity term of a first image of the under-sampled k-space data in view of a second image of the under-sampled k-space data, wherein a time component separated the first image and the second image, determining a spatial penalization on redundant Haar wavelet coefficients of the first image in view of the second image, and optimizing the first image according the data fidelity term and the spatial penalization, wherein the spatial penalization selectively penalizes temporal coefficients and an optimized image of the first image is output.
摘要:
A reconstructed image is rendered of a patient by a processor from a set of undersampled MRI data by first subtracting two repetitions of the acquired data in k-space to create a third dataset. The processor reconstructs the image by minimizing an objective function under a constraint related to the third dataset, wherein the objective function includes applying a Karhunen-Loeve Transform (KLT) to a temporal dimension of data. The objective function under the constraint is expressed as arg minf{∥φ(f)∥1 subject to ∥Af−y∥2≦ε}. The reconstructed image is an angiogram which may be a 4D angiogram. The angiogram is used to diagnose a vascular disease.
摘要:
A reconstructed image is rendered of a patient by a processor from a set of undersampled MRI data by first subtracting two repetitions of the acquired data in k-space to create a third dataset. The processor reconstructs the image by minimizing an objective function under a constraint related to the third dataset, wherein the objective function includes applying a Karhunen-Loeve Transform (KLT) to a temporal dimension of data. The objective function under the constraint is expressed as arg minf{∥φ(f)∥1 subject to ∥Af−y∥2≦ε}. The reconstructed image is an angiogram which may be a 4D angiogram. The angiogram is used to diagnose a vascular disease.
摘要:
A computer-implemented method for learning a tight frame includes acquiring undersampled k-space data over a time period using an interleaved process. An average of the undersampled k-space data is determined and a reference image is generated based on the average of the undersampled k-space data. Next, a tight frame operator is determined based on the reference image. Then, a reconstructed image data is generated from the undersampled k-space data via a sparse reconstruction which utilizes the tight frame operator.