摘要:
An optical lithography method is disclosed that uses double exposure of a reusable template mask and a trim mask to fabricate regularly-placed rectangular contacts in standard cells of application-specific integrated circuits (ASICs). A first exposure of the reusable template mask with periodic patterns forms periodic dark lines on a wafer and a second exposure of an application-specific trim mask remove the unwanted part of the dark lines and the small cuts of the dark lines left form the rectangular regularly-placed contacts. All contacts are placed regularly in one direction while unrestrictedly in the perpendicular direction. The regular placement of patterns on the template mask enable more effective use of resolution enhancement technologies, which in turn allows a decrease in manufacturing cost and the minimum contact size and pitch. Since there is no extra application-specific mask needed comparing with the conventional lithography method for unrestrictedly-placed contacts, the extra cost is kept to the lowest. The method of the invention can be used in the fabrication of standard cells in application-specific integrated circuits (ASICs) to improve circuit performance and decrease circuit area and manufacturing cost.
摘要:
The present invention relates generally to a method for lithographically printing a mask pattern on a substrate, in particular a semiconductor substrate, wherein the mask pattern includes features with diverse pitches. These features may include device features such as vias or contact holes and lines in integrated circuits. The method comprises splitting the mask pattern into a plurality of masks, wherein one or more of the masks contains relatively tightly nested features and one or more of the masks contains relatively isolated features. Each of the plurality of masks is then successively exposed on a photoresist layer on the substrate. For each exposure, the exposure conditions, photoresist layer, other thin films layers, etching process, mask writing process, and/or mask pattern bias may be optimized for the tightly nested feature pattern or isolated feature pattern.
摘要:
A two-step method for eliminating transmission errors in alternating phase-shifting masks is described. Initially, the design data is selectively biased to provide a coarse reduction in the inherent transmission error between features of different phase, size, shape, and/or location. During fabrication of the mask with the modified data, residual transmission errors are then eliminated via the positioning of the edges of the etched-quartz trenches which define the phase of a given feature to a set location beneath the opaque chrome film. Application of feedback, in which the aerial image of the mask is monitored during the positioning of the etched-quartz edges, provides additional and precise control of the residual transmission error.
摘要:
Subtleties of advanced fabrication processes and nano-scale phenomena associated with integrated circuit miniaturization have exposed the insufficiencies of design rules. Such inadequacies have adverse impact on all parts of the integrated circuit creation flow where design rules are used. In addition, segregation of the various layout data modification steps required for deep sub-micrometer manufacturing are resulting in slack and inefficiencies. This invention describes methods to improve integrated circuit creation via the use of a unified model of fabrication processes and circuit elements that can complement or replace design rules. By capturing the interdependence among fabrication processes and circuit elements, the unified model enables efficient layout generation, resulting in better integrated circuits.
摘要:
The manufacturing of integrated circuits relies on the use of optical proximity correction (OPC) to correct the printing of the features on the wafer. The data is subsequently fractured to accommodate the format of existing mask writer. The complexity of the correction after OPC can create some issues for vector-scan e-beam mask writing tools as very small slivers are created when the data is converted to the mask write tool format. Moreover the number of shapes created after fracturing is quite large and are not related to some important characteristics of the layout like for example critical areas. A new technique is proposed where the order of the OPC and fracturing steps is reversed. The fracturing step is done first in order to guarantee that no slivers are created and that the number of shapes is minimized. The shapes created can also follow the edges of critical zones so that critical and non-critical edges can be differentiated during the subsequent OPC step.
摘要:
A method of simulating aerial images of large mask areas obtained during the exposure step of a photo-lithographic process when fabricating a semiconductor integrated circuit silicon wafer is described. The method includes the steps of defining mask patterns to be projected by the exposure system to create images of the mask patterns; determining an appropriate sampling range and sampling interval; generating a characteristic matrix describing the exposure system; inverting the matrix to obtain eigenvalues as well as the eigenvectors (or kernels) representing the decomposition of the exposure system; convolving the mask patterns with these eigenvectors; and weighing the resulting convolution by the eigenvalues to form the aerial images. The method is characterized in that the characteristic matrix is precisely defined by the sampling range and the sampling interval, such that the sampling range is the shortest possible and the sampling interval, the largest possible, without sacrificing accuracy. The method of generating aerial images of patterns having large mask areas provides a speed improvement of several orders of magnitude over conventional approaches.
摘要:
A method for generating an optical proximity correction (OPC) model includes generating a set of correction rules for a wafer design containing at least one of lines and assist features, determining a set of corrections that need to be made over a range of sizes and spaces of the lines and assist features based on the set of correction rules, and creating an optical proximity correction model for correcting the wafer design based on the set of corrections.
摘要:
A method for exposing a workpiece in a dual exposure step-and-repeat process starts by forming a design for a reticle mask. Deconstruct the design for the reticle mask by removing a set(s) of the features that are juxtaposed to form hollow polygonally-shaped clusters with a gap in the center. Form unexposed resist on the workpiece. Load the workpiece and the reticle mask into the stepper. Expose the workpiece through the reticle mask. Reposition the workpiece by a nanostep. Then expose the workpiece through the reticle mask after the repositioning. Test whether the plural exposure process is finished. If the result of the test is NO the process loops back to repeat some of the above steps. Otherwise the process has been completed. An overlay mark is produced by plural exposures of a single mark. A dead zone is provided surrounding an array region in which printing occurs subsequent to exposure in an original exposure. Alternatively, the workpiece can be fully exposed first by stepping a series of full steps, then going back to the starting position, making a nanostep to reset the starting position and re-exposing from the reset starting position in the same way with full steps from the nanostepped position. The clusters may be in the shape of a hexagon or a diamond.
摘要:
A method of creating a pattern for a mask adapted for use in lithographic production of features on a substrate. The method comprises initially providing a mask pattern of a feature to be created on the substrate using the mask. The method then includes establishing target dimensional bounds of the pattern, determining simulated achievable dimensional bounds of the pattern, comparing the target dimensional bounds of the pattern to the simulated achievable dimensional bounds of the pattern, and determining locations where the simulated achievable dimensional bounds of the pattern differ from the target dimensional bounds of the pattern. In its preferred embodiment, the feature is an integrated circuit to be lithographically produced on a semiconductor substrate.
摘要:
A method for reducing lens aberrations sensitivity and proximity effects of alternating phase shifted masks is described. The critical features of a chip design layout are first identified. Multiple, narrow phase regions and auxiliary phase transitions, which provide additional opaque features, are then formed alongside the critical features such that a grating pattern of substantially uniform pitch is printed. Together with a complementary trim mask, the circuit pattern so delineated has reduced sensitivity to lens aberrations and proximity effects.