摘要:
An X-ray imaging apparatus is provided having advantages of both C-shaped, G-shaped, and ring-shaped arm configurations. The device consists of a gantry that supports X-ray imaging machinery. The gantry is formed to allow two bi-planar X-rays to be taken simultaneously or without movement of the equipment and/or patient. The gantry is adjustable to change angles of the X-ray imaging machinery. Further, in some embodiments, the X-ray receptor portion of the X-ray imaging machinery may be positioned on retractable and extendable arms, allowing the apparatus to have a larger access opening when not in operation, but to still provide bi-planar X-ray ability when in operation.
摘要:
An X-ray imaging apparatus is provided having advantages of both C-shaped, G-shaped, and ring-shaped arm configurations. The device consists of a gantry that supports X-ray imaging machinery. The gantry is formed to allow two bi-planar X-rays to be taken simultaneously or without movement of the equipment and/or patient. The gantry is adjustable to change angles of the X-ray imaging machinery. Further, in some embodiments, the X-ray receptor portion of the X-ray imaging machinery may be positioned on retractable and extendable arms, allowing the apparatus to have a larger access opening when not in operation, but to still provide bi-planar X-ray ability when in operation.
摘要:
The disclosure provides a color ultrasound system and a method and a device thereof for obtaining beam-forming line data. The method comprises: a processor sending a control command according to a currently triggered color ultrasonograph mode; the processor receiving the digital ultrasonic echo signal data obtained according to the control command, wherein the digital ultrasonic echo signal data is a digital signal obtained by performing analog-to-digital conversion on an analog ultrasonic echo signal; and the processor performing beam-forming processing on the digital ultrasonic echo signal data to obtain corresponding beam-forming line data. With the disclosure, the color ultrasound system hardware is simple in design and flexible, and resource conservation and cost reduction are achieved during technical update.
摘要:
The disclosure provides a Computed Tomography (CT) image acquisition device and a CT scan imaging system. The CT scan imaging system includes: an image acquisition device, which specifically includes a first image acquisition device (1A, 1B) and a second image acquisition device (2A, 2B) that are perpendicular to each other, wherein the first image acquisition device (1A, 1B) or the second image acquisition device (2A, 2B) includes: an X-ray tube (1A, 2A), which is used for emitting X-rays, and a detector (1B, 2B), which is arranged opposite to the X-ray tube in the vertical direction and is used for receiving the X-rays and obtaining projection data according to the X-rays; and an image processing device (4), which is used for acquiring a three-dimensional image through reconstruction of the projection data, wherein the three-dimensional image includes one or more tomographic images.
摘要:
The disclosure provides a Computed Tomography (CT) image acquisition device and a CT scan imaging system. The CT scan imaging system includes: an image acquisition device, which specifically includes a first image acquisition device (1A, 1B) and a second image acquisition device (2A, 2B) that are perpendicular to each other, wherein the first image acquisition device (1A, 1B) or the second image acquisition device (2A, 2B) includes: an X-ray tube (1A, 2A), which is used for emitting X-rays, and a detector (1B, 2B), which is arranged opposite to the X-ray tube in the vertical direction and is used for receiving the X-rays and obtaining projection data according to the X-rays; and an image processing device (4), which is used for acquiring a three-dimensional image through reconstruction of the projection data, wherein the three-dimensional image includes one or more tomographic images.
摘要:
A 3D image generation method includes controlling a G-arm frame to rotate to a target angle, and keeping the currents and voltages of two X-ray tubes unchanged during rotation, obtaining groups of 2D projection data of an object when a G-arm is in different angles, each group of 2D projection data including two paths of projection data, conducting calculation according to an FDK algorithm or an FDK correction algorithm using the groups of 2D projection data to obtain a 3D image of the object, and outputting the 3D image, thereby greatly reducing the data obtaining time by obtaining two paths of projection data, effectively reducing the irradiation time of the object, directly outputting the 3D image of the object, reflecting the full view information about the object, and solving the problem in the prior art that the irradiation time of the object under examination of X-rays is long.
摘要:
The disclosure provides a color ultrasound system and a method and a device thereof for obtaining beam-forming line data. The method comprises: a processor sending a control command according to a currently triggered color ultrasonograph mode; the processor receiving the digital ultrasonic echo signal data obtained according to the control command, wherein the digital ultrasonic echo signal data is a digital signal obtained by performing analog-to-digital conversion on an analog ultrasonic echo signal; and the processor performing beam-forming processing on the digital ultrasonic echo signal data to obtain corresponding beam-forming line data. With the disclosure, the color ultrasound system hardware is simple in design and flexible, and resource conservation and cost reduction are achieved during technical update.
摘要:
A 3D image generation method includes controlling a G-arm frame to rotate to a target angle, and keeping the currents and voltages of two X-ray tubes unchanged during rotation, obtaining groups of 2D projection data of an object when a G-arm is in different angles, each group of 2D projection data including two paths of projection data, conducting calculation according to an FDK algorithm or an FDK correction algorithm using the groups of 2D projection data to obtain a 3D image of the object, and outputting the 3D image, thereby greatly reducing the data obtaining time by obtaining two paths of projection data, effectively reducing the irradiation time of the object, directly outputting the 3D image of the object, reflecting the full view information about the object, and solving the problem in the prior art that the irradiation time of the object under examination of X-rays is long.