摘要:
Disclosed is a demodulation apparatus for receiving signals by an adaptive modulation and coding method, and demodulating the signals, in an OFDMA based packet communication system, comprising: a QAM demapper for performing QAM demapping to the received signals by a modulation method using a maximum modulation ratio, until modulation methods for each of sub-channels are analyzed; a slot buffer for storing the data outputted from the QAM demapper; a channel decoder for decoding the data stored in the slot buffer and analyzing modulation methods for each sub-channels and transferring the analyzed modulation methods to the QAM demapper; and in at the same time, reading valid data from the data stored in the slot buffer, based on the analyzed modulation methods for each sub-channels, and demodulating the valid data.
摘要:
The present invention relates to a method for automatic gain control (AGC) before an initial synchronization of a mobile station modem in OFDM system, and an apparatus thereof. The AGC apparatus includes: an initial synchronization inspector that verifies whether an initial synchronization for an input block sample (k) signal has been performed; a frame divider that divides a frame into predetermined intervals B(k) for the input block sample(k) signal in the case that the initial synchronization has not been performed; a reference value inspector that compares a difference value Pref−Pcalc, between a predetermined reference value Pref and sample data average energy Pcalc, with a predetermined value; a count controller that increases or decreases the count when the difference value Pref−Pcalc compared by the reference value inspector is greater or less than the predetermined value; a count inspector that inspects whether the count is greater or less than 0 when the input block sample (k) reaches a maximum value MAX; and a gain controller which increases or decreases the gain, level by level, according to the count inspection result of the count inspector.
摘要:
Disclosed is an automatic gain control device in an orthogonal frequency division multiplexing system. A variable gain amplifier controls a gain of an input signal; an energy calculator calculates an energy of the input signal; a truncator accumulates the calculated energies, finds an average thereof, and generates a DC offset of the input signal; a subtracter subtracts a predefined reference value from the DC offset, and outputs a signal; and an RC filter feeds the value output by the subtracter back to the variable gain amplifier so that the value output by the subtracter may be used for an automatic gain control. The predefined reference value given to be 4.Ov is a reference power generated based on a saturation to RMS ratio for minimizing the bit error rate of the orthogonal frequency division multiplexing system.
摘要:
The present invention relates to a signal transmitting apparatus, a method thereof, and an inverse fast Fourier transform (IFFT) apparatus for a signal transmitting apparatus. A signal transmitting apparatus according to an embodiment of the present invention receives data, and performs inverse fast Fourier transform (IFFT) on the data on the basis of a twiddle factor for shifting output data by the size of a cyclic prefix. In addition, the signal transmitting apparatus sequentially stores data corresponding to the size of the cyclic prefix starting with initial data among the transformed data, and generates an OFDM symbol on the basis of the stored data and the transformed data. According to the embodiment of the present invention, it is possible to efficiently reduce a time delay and a memory use amount when a cyclic prefix is added at a transmitting end, without changing the size of hardware and power consumption.
摘要:
A subcarrier allocating apparatus allocating data to be transmitted to a plurality of orthogonal subcarriers in an orthogonal frequency division multiplexing (OFDM) system is provided. The apparatus includes a logical index generator generating a logical index for allocating a data subcarrier to a physical index, the logical index being included with only data subcarriers and the physical index indicating a location of a substantial subcarrier within a symbol, an intermediate index converter converting the logical index into an intermediate index by performing a given operation on the generated logical index and a pilot location constant, and a physical index converter converting the intermediate index into a physical index based on the number of data subcarriers on the left and right sides of a null subcarrier for insertion of a guard interval formed by the null subcarrier.
摘要:
The present invention relates to a method of calculating a log-likelihood ratio and a method of detecting a transmission signal. According to the present invention, when a transmission symbol candidate vector is detected on the basis of a received signal, a threshold value and an ML metric of each transmission symbol candidate vector are calculated and the ML metric that is larger than the threshold value is updated by the threshold value. Further, a log-likelihood ratio of the transmission signal bit is calculated using the updated ML metric and the threshold value, and a transmission signal is detected using the log-likelihood ratio.
摘要:
The present invention relates to an apparatus and method of compensating for a frequency offset in an orthogonal frequency division multiple access system that is capable of efficiently estimating and compensating for the frequency offset. A receiver of the orthogonal frequency division multiple access system can individually estimate a fractional frequency offset and an integer frequency offset by using a downlink preamble signal. Further, the receiver can compensate for the frequency offset by adding the integer frequency offset once after completely compensating for the fractional frequency offset. Therefore, it is possible to efficiently compensate for the frequency offset.
摘要:
The present invention relates to a transmitter of an OFDMA system capable of controlling a gain for variation of subchannel allocation, and a method thereof. The transmitter includes a subchannel number determining unit, a modulator, a digital/analogue converter, and a gain controller controlling the gain. The subchannel number determining unit determines the number of subchannels in use according to communication environments, and the modulator modulates transmission data with reference to the number of subchannels determined by the subchannel number determining unit and outputs the modulated transmission data. The digital/analogue converter converts the transmission data into analogue data and transmits the converted analogue data through a transmit antenna. The gain controller controls gains of the transmission data according to gain values corresponding to the number of subchannels.
摘要:
The present invention provides a method for designing operation schedules of a fast Fourier transform (FFT) and a multiple input multiple output orthogonal frequency division multiplexing modem (MIMO-OFDM modem) thereof. According to the present invention, an operation speed of an FFT operator is set up, a receiving symbol is arranged in an OFDM symbol duration in an FFT after receiving the symbol, a transmitting symbol is arranged in an OFDM symbol duration in the FFT schedule before transmitting the symbol, a transmitting/receiving symbol which has the same timing is inserted into an idle symbol duration of the FFT schedule, an FFT schedule which is good to be deleted is deleted, and symbols of the deleted FFT schedule are re-arranged in order to not have an error occur in transmitting/receiving timing.
摘要:
A receiving apparatus of a mobile terminal receiving a signal in a synchronous OFDM system under a multi-cell environment, including a demodulation start controller performing frame synchronization and cell search using a received signal and outputting information on a demodulation start point and a to-be-demodulated neighbor cell; a FFT unit converting a time-domain signal into a frequency-domain signal; a scramble code generator generating scramble codes for the to-be-demodulated neighbor cell from the demodulation start controller and the current cell; a correlator multiplying a signal from the FFT unit and scramble codes from the scramble code generator and outputting correlation signals; demodulators provided corresponding to a current cell and a maximum number of neighbor cells to be demodulated, and demodulating the correlation signals; and a decoder decoding signals from the demodulators and restoring original information transmitted from the corresponding cell.