Abstract:
An example network system includes a layer two (L2) device and a layer three (L3) device. The L2 device includes a control unit is configured to determine a preferred network path from a first L2 network in which the L2 device resides to an intermediate L3 network in which the L3 device resides that couples the first L2 network to a second L2 network having a second L2 device. The control unit includes a management endpoint (MEP) module. The MEP module executes an operations, administration, and management (OAM) protocol to monitor the first L2 network and output an L2 frame in accordance with the OAM protocol to the L3 device to notify the L3 device that it is within the preferred network path. A MEP module of the L3 device executes an OAM protocol that outputs L2 frames to the L2 device indicating the status of the L3 network.
Abstract:
An example network system includes a layer two (L2) device and a layer three (L3) device. The L2 device includes a control unit is configured to determine a preferred network path from a first L2 network in which the L2 device resides to an intermediate L3 network in which the L3 device resides that couples the first L2 network to a second L2 network having a second L2 device. The control unit includes a management endpoint (MEP) module. The MEP module executes an operations, administration, and management (OAM) protocol to monitor the first L2 network and output an L2 frame in accordance with the OAM protocol to the L3 device to notify the L3 device that it is within the preferred network path. A MEP module of the L3 device executes an OAM protocol that outputs L2 frames to the L2 device indicating the status of the L3 network.
Abstract:
Techniques are disclosed for an Ethernet Virtual Private Network (EVPN) Virtual Private Wire Service (VPWS) network with service interface-aware forwarding. In one example, a first network device signals to a second network device, using EVPN route advertisements, a multi-service service tunnel to transport network packets for a plurality of services. The services are identifiable by virtual local area network (VLAN) identifiers in the packets. The first network device is configured with a single transport interface for the service tunnel and the single transport interface is configured with respective service interfaces for the services. The first network device detects failure of a failed service interface of the service interfaces and outputs, in response to the failure, an EVPN route withdrawal message for the service tunnel that identifies the service corresponding to the failed service interface.
Abstract:
Techniques for EVPN Host Routed Bridging (HRB) and EVPN cloud-native data center with Host Routed Bridging (HRB) are described. A host computing device of a data center includes one or more containerized user-level applications. A cloud native virtual router is configured for dynamic deployment by the data center application orchestration engine and operable in a user space of the host computing device. Processing circuitry is configured for execution of the containerized user-level applications and the cloud native virtual router. The cloud native virtual router comprises a containerized routing protocol process configured to operate as a control plane, and a data plane for the containerized router. The data plane is configured to operate an ethernet virtual private network (EVPN) encapsulation/decapsulation data path of an overlay network for communicating layer two (L2) network traffic of the containerized user applications over a switch fabric of the data center.
Abstract:
Techniques are disclosed for an Ethernet Virtual Private Network (EVPN) Virtual Private Wire Service (VPWS) network with service interface-aware forwarding. In one example, a first network device signals to a second network device, using EVPN route advertisements, a multi-service service tunnel to transport network packets for a plurality of services. The services are identifiable by virtual local area network (VLAN) identifiers in the packets. The first network device is configured with a single transport interface for the service tunnel and the single transport interface is configured with respective service interfaces for the services. The first network device detects failure of a failed service interface of the service interfaces and outputs, in response to the failure, an EVPN route withdrawal message for the service tunnel that identifies the service corresponding to the failed service interface.
Abstract:
An example network system includes a layer two (L2) device and a layer three (L3) device. The L2 device includes a control unit is configured to determine a preferred network path from a first L2 network in which the L2 device resides to an intermediate L3 network in which the L3 device resides that couples the first L2 network to a second L2 network having a second L2 device. The control unit includes a management endpoint (MEP) module. The MEP module executes an operations, administration, and management (OAM) protocol to monitor the first L2 network and output an L2 frame in accordance with the OAM protocol to the L3 device to notify the L3 device that it is within the preferred network path. A MEP module of the L3 device executes an OAM protocol that outputs L2 frames to the L2 device indicating the status of the L3 network.
Abstract:
An example network system includes a layer two (L2) device and a layer three (L3) device. The L2 device includes a control unit is configured to determine a preferred network path from a first L2 network in which the L2 device resides to an intermediate L3 network in which the L3 device resides that couples the first L2 network to a second L2 network having a second L2 device. The control unit includes a management endpoint (MEP) module. The MEP module executes an operations, administration, and management (OAM) protocol to monitor the first L2 network and output an L2 frame in accordance with the OAM protocol to the L3 device to notify the L3 device that it is within the preferred network path. A MEP module of the L3 device executes an OAM protocol that outputs L2 frames to the L2 device indicating the status of the L3 network.
Abstract:
Techniques for EVPN Host Routed Bridging (HRB) and EVPN cloud-native data center with Host Routed Bridging (HRB) are described. A host computing device of a data center includes one or more containerized user-level applications. A cloud native virtual router is configured for dynamic deployment by the data center application orchestration engine and operable in a user space of the host computing device. Processing circuitry is configured for execution of the containerized user-level applications and the cloud native virtual router. The cloud native virtual router comprises a containerized routing protocol process configured to operate as a control plane, and a data plane for the containerized router. The data plane is configured to operate an ethernet virtual private network (EVPN) encapsulation/decapsulation data path of an overlay network for communicating layer two (L2) network traffic of the containerized user applications over a switch fabric of the data center.
Abstract:
Techniques are disclosed for an Ethernet Virtual Private Network (EVPN) Virtual Private Wire Service (VPWS) network with service interface-aware forwarding. In one example, a first network device signals to a second network device, using EVPN route advertisements, a multi-service service tunnel to transport network packets for a plurality of services. The services are identifiable by virtual local area network (VLAN) identifiers in the packets. The first network device is configured with a single transport interface for the service tunnel and the single transport interface is configured with respective service interfaces for the services. The first network device detects failure of a failed service interface of the service interfaces and outputs, in response to the failure, an EVPN route withdrawal message for the service tunnel that identifies the service corresponding to the failed service interface.
Abstract:
Techniques are disclosed for an Ethernet Virtual Private Network (EVPN) Virtual Private Wire Service (VPWS) network with service interface-aware forwarding. In one example, a first network device signals to a second network device, using EVPN route advertisements, a multi-service service tunnel to transport network packets for a plurality of services. The services are identifiable by virtual local area network (VLAN) identifiers in the packets. The first network device is configured with a single transport interface for the service tunnel and the single transport interface is configured with respective service interfaces for the services. The first network device detects failure of a failed service interface of the service interfaces and outputs, in response to the failure, an EVPN route withdrawal message for the service tunnel that identifies the service corresponding to the failed service interface.