Abstract:
Techniques are described for supporting designated forwarder election for a multi-homed Ethernet virtual private network (EVPN) data center interconnect (DCI) between multiple data centers by leveraging and utilizing adjacency state information learned from a multicast routing protocol that controls multicast distribution within an underlying transport network of a local data center. For example, a set or routers operating to provide a multi-homed EVPN DCI may utilize adjacency state information learned from a Protocol Independent Multicast (PIM) executing within the underlying transport network of a multi-homed data center to facilitate selection of a designated forwarder for the EVPN between the data centers. By leveraging adjacency state information, an enhanced DF election may be automatically performed for the EVPN to facilitate selection of a designated forwarder in a manner that may avoid loss of traffic in situations where a topology event in the underlying transport network of the data center.
Abstract:
In general, techniques for facilitating a distributed network (L3) subnet by which multiple independent control planes of network devices connected to physically separate L2 networks provide L2 reachability to/from a single L3 subnet. In some examples, a shared L2 network physically situated to connect a plurality of physically separate L2 networks “stitches” the L2 networks together within the respective, independent control planes of switches such that the control planes bridge L2 traffic for a single bridge domain for the separate L2 networks to the shared L2 network and visa-versa. Each of the independent control planes may be configured with a virtual IRB instance associated with the bridge domain and with a common network subnet. Each of the virtual IRBs provides a functionally similar routing interface for the single bridge domain for the separate L2 networks and allows the shared network subnet to be distributed among the independent control planes.
Abstract:
In general, techniques are described for providing control plane messaging in an active-active (or all-active) configuration of a multi-homed EVPN environment. In some examples, the techniques include receiving a control plane message comprising at least one address that identifies that second PE network device. The techniques may include configuring, based at least in part on the control plane message, a forwarding plane of a first PE network device to identify network packets having respective destination addresses that match the at least one address. The techniques may include determining that at least one address of the network packet matches the at least one address that identifies the second PE network device. The techniques may include, responsive to the determination, skipping a decrement of the Time-To-Live (TTL) value of the network packet, and forwarding the network packet to the second PE network device.
Abstract:
A provider edge (PE) device may receive an indication to perform a designated forwarder (DF) election associated with a network segment that includes the PE device, one or more other PE devices, and a client edge (CE) device. The PE device, the one or more other PE devices, and the CE device may be associated with an Ethernet virtual private network (EVPN) that includes a group of EVPN instances (EVIs). The PE device may perform the DF election in order to determine election information associated with the PE device. The election information may include information associated with a particular EVI, of the group of EVIs, for which the PE device is to act as a DF. The PE device may provide the election information to the CE device to cause the CE device to provide traffic, associated with a particular VLAN included in the particular EVI, to the PE device.
Abstract:
In general, techniques for facilitating a distributed network (L3) subnet by which multiple independent control planes of network devices connected to physically separate L2 networks provide L2 reachability to/from a single L3 subnet. In some examples, a shared L2 network physically situated to connect a plurality of physically separate L2 networks “stitches” the L2 networks together within the respective, independent control planes of switches such that the control planes bridge L2 traffic for a single bridge domain for the separate L2 networks to the shared L2 network and visa-versa. Each of the independent control planes may be configured with a virtual IRB instance associated with the bridge domain and with a common network subnet. Each of the virtual IRBs provides a functionally similar routing interface for the single bridge domain for the separate L2 networks and allows the shared network subnet to be distributed among the independent control planes.
Abstract:
A provider edge (PE) device may receive an indication to perform a designated forwarder (DF) election associated with a network segment that includes the PE device, one or more other PE devices, and a client edge (CE) device. The PE device, the one or more other PE devices, and the CE device may be associated with an Ethernet virtual private network (EVPN) that includes a group of EVPN instances (EVIs). The PE device may perform the DF election in order to determine election information associated with the PE device. The election information may include information associated with a particular EVI, of the group of EVIs, for which the PE device is to act as a DF. The PE device may provide the election information to the CE device to cause the CE device to provide traffic, associated with a particular VLAN included in the particular EVI, to the PE device.
Abstract:
A provider edge (PE) device may receive an indication to perform a designated forwarder (DF) election associated with a network segment that includes the PE device, one or more other PE devices, and a client edge (CE) device. The PE device, the one or more other PE devices, and the CE device may be associated with an Ethernet virtual private network (EVPN) that includes a group of EVPN instances (EVIs). The PE device may perform the DF election in order to determine election information associated with the PE device. The election information may include information associated with a particular EVI, of the group of EVIs, for which the PE device is to act as a DF. The PE device may provide the election information to the CE device to cause the CE device to provide traffic, associated with a particular VLAN included in the particular EVI, to the PE device.