Abstract:
A PWM driving apparatus for an LED includes a sawtooth wave generator (1) for generating a sawtooth wave signal, a comparator (2), an FET (3), a first resistor (4), a second resistor (5), a power supply (7), and a light emitting diode array (8). A modulation signal provided by a modulation signal source (6) and the sawtooth wave signal are fed to the comparator, an output of the comparator is connected to a gate terminal of the FET, the power supply is connected to a source terminal of the FET through the first resistor, and a drain tenninal of the FET outputs a driving current through the second resistor to the light emitting diode array.
Abstract:
A driving apparatus (2) for cold cathode fluorescent lamps (CCFLs) includes a primary and a secondary driving circuits (22, 21), a primary and a secondary light tubes (24, 23), a primary and a secondary feedback circuits (26, 27), and two photosensitive elements (25) corresponding to the primary and the secondary light tubes, respectively. The primary and the secondary driving circuits provide power to drive the primary and the secondary light tubes, respectively. The primary feedback circuit receives photoelectric current of a corresponding photosensitive element and provides an output signal to the primary driving circuit. The secondary feedback circuit receives currents of both photosensitive elements, and provides an output signal to the secondary driving circuit to keep a brightness of the secondary light tube the same as the brightness of the primary light tube.
Abstract:
A backlight module (3) includes a light source group (31) and a light guide plate (32). The light source group includes at least a light source, and the light guide plate has a light input surface (321) for receiving light, a light output surface (322) for emitting light, which is adjacent to the light input surface, and a bottom surface opposite to the light output surface and adjacent the light input surface. The light source group faces the light input surface, which is curved such that its curvature matches with the light distribution of the light source group.
Abstract:
The present invention provides a PWM current adjustment apparatus including a triangle wave generator (8) for generating a triangle wave voltage signal, a comparator (9), an FET (10), a power supply (14), a first resistor (11) and a second resistor (12). The triangle wave voltage signal generated by the triangle wave generator and a modulation signal provided by a modulation voltage source (13) are fed to the comparator, an output of the comparator is connected to a gate terminal of the FET, the power supply is connected to a source terminal of the FET through the first resistor, and a drain terminal of the FET outputs a driving current through the second resistor to a load.
Abstract:
A current driving apparatus includes a first square wave generator (100), a second square wave generator (200), an FET (Field Effect Transistor) (3), and a power supply (9). The first square wave generator has an output connected to the second square wave generator's input. The second square wave generator has an output connected to the FET gate. A current clamping resistor (11) is provided between the FET source and the power supply. The FET drain provides current to a possible load (not shown). The first square wave generator generates a low frequency square wave signal for timing control, and the second square wave generator generates a high frequency square wave signal for amplitude control.