Abstract:
A heat exchanger includes a heat exchanger body having a plurality of layer portions each having a plurality of flow paths, and having a configuration in which adjacent layer portions are joined to each other, an inflow header being configured that a fluid is introduced into the inflow header to flow into the plurality of flow paths, an outflow header being configured that a fluid flowing through the plurality of flow paths merges, a cover portion covering all joint portions of the adjacent layer portions or all joint portions of components of layer portions, the joint portions exposed on an outer surface of the heat exchanger body at a portion other than a portion where the inflow header and the outflow header are disposed, and a lead-out portion connected to the cover portion and forming an internal flow path communicating with a space between the cover portion and the heat exchanger body. The lead-out portion is configured to emit a fluid to a predetermined region set in advance.
Abstract:
In a heat exchanger of the present invention, a release port for, in a case where a fluid flows into an internal space, releasing the fluid to an exterior is provided in a protection unit main body of each of protection units arranged on both outer sides of a heat exchange unit, and a protection unit fin plate of the protection unit has such strength that a coupling state between an outer surface of an outermost-layer partition plate and a bonding plate of the protection unit main body facing the outer surface is maintained even in a case where an inner pressure set as a design pressure for a part of the heat exchange unit constituting an outermost-layer flow passage adjacent to the protection unit is applied to the internal space of the protection unit main body of the protection unit.
Abstract:
A microchannel heat exchanger is a heat exchanger for cooling hydrogen gas with a cooling medium, and includes a cooling side layer formed with a plurality of medium flow paths for flowing the cooling medium, and a high temperature side layer formed with a plurality of hydrogen flow paths for flowing the hydrogen gas and a first introduction port for flowing the hydrogen gas into the plurality of hydrogen flow paths. The first introduction port has a circular shape or an elliptical shape. An inflow end of each of the plurality of hydrogen flow paths is connected to a peripheral surface of the first introduction port. The hydrogen flow path extends from the first introduction port to the first lead out port without branching.
Abstract:
Provided is a cooling device with which it is possible to cool a fluid to be cooled, even before maintenance work, if a fault such as a blockage or a breakage occurs in a part of a channel. The cooling device (1) is provided with four heat exchangers (1A-1D) and a plurality of heat exchanger connection parts (111-120), each of the heat exchanger connection parts allowing natural gas to flow therethrough. Each of the heat exchangers has: a drum (101, 102, 103, fourth drum 104), a refrigerant reservoir (T), a plurality of heat exchanger core parts (121, 122, 123, 124) immersed in liquid propane in the refrigerant reservoir (T), and a demister (106). A plurality of cooling channels allowing natural gas to flow therethrough are installed, independent of each other, from the first heat exchanger (1A) to the fourth heat exchanger (1D).
Abstract:
In a heat exchanger of the present invention, a release port for, in a case where a fluid flows into an internal space, releasing the fluid to an exterior is provided in a protection unit main body of each of protection units arranged on both outer sides of a heat exchange unit, and a protection unit fin plate of the protection unit has such strength that a coupling state between an outer surface of an outermost-layer partition plate and a bonding plate of the protection unit main body facing the outer surface is maintained even in a case where an inner pressure set as a design pressure for a part of the heat exchange unit constituting an outermost-layer flow passage adjacent to the protection unit is applied to the internal space of the protection unit main body of the protection unit.