Abstract:
A motor control apparatus includes an AC-DC converter, an auxiliary power source, and an inverter. The AC-DC converter converts AC power into DC power and feeds the DC power to a DC bus bar. DC power is fed from the auxiliary power source to the DC bus bar and from the DC bus bar to the auxiliary power source. The inverter converts the DC power of the DC bus bar into the AC power and feeds the AC power to a motor. The auxiliary power source includes a capacitor, a DC-DC converter, and circuitry. The DC-DC converter performs conversion between a first DC voltage of the DC bus bar and a second DC voltage applied between both terminals of the capacitor or inside of the capacitor. The circuitry is configured to control the DC-DC converter to maintain positive correlation between the second DC voltage and the first DC voltage.
Abstract:
A motion controller includes a controller configured to output a motor driving command based on a motion-and-sequence time chart used for motion control of a motor, to a motor driving apparatus. The controller is configured to receive the motion-and-sequence time chart, which has been created by a general-purpose PC, from the general-purpose PC via a higher-layer network. The controller is configured to receive the motion-and-sequence time chart including a command data sequence included in the motor driving command for the motor driving apparatus. The controller is configured to receive the motion-and-sequence time chart including a sequence time chart that describes a coordinated relationship between the motion control of the motor and a certain two-level input/output signal relating to the motion control of the motor.
Abstract:
Provided is an electric-motor control device, including: a command value calculation unit configured to calculate a command value directed to an electric motor based on a command value and a given moment-of-inertia value; a difference detection unit configured to detect a difference between the moment-of-inertia value and an estimated moment-of-inertia value; a moment-of-inertia value change unit configured to change at least anyone of the moment-of-inertia value and a correction coefficient for the moment-of-inertia value based on the difference; and a change restriction unit configured to restrict a change in the moment-of-inertia value or the correction coefficient when at least any one of the moment-of-inertia value and the correction coefficient is changed to decrease by the moment-of-inertia value change unit.
Abstract:
This disclosure discloses a motor control apparatus including a current conversion part, a voltage control part, a current detection part, and a current estimation part. The current conversion part generates a voltage command on the basis of a current deviation between a current command and an estimated current. The voltage control part controls an output voltage to a motor. The current detection part detects a motor current. The current estimation part inputs the detected motor current and the voltage command and outputs the motor current in which an influence by a disturbance has been compensated for as the estimated current.
Abstract:
An engineering tool includes a function that allows a user to perform, through a selection operation and a geometrical figure input operation, various motion-control-related setting operations for a motion controller configured to perform motion control on a motor via a motor driving apparatus. In response to input of a motion operation chart including a chronological and geometrical description from a user, a motion-and-sequence time chart to be referred to by the motion controller is created so as to allow a motor driving command for the motor driving apparatus to be chronologically output. The motion-and-sequence time chart is created by adding a command data sequence included in the motor driving command for the motor driving apparatus.
Abstract:
A direct drive motor comprises a first ring body and a second ring body. The first ring body is disposed on one side in an axial direction and on one side in a radial direction. The second ring body is disposed on the other side in the axial direction and on the other side in the radial direction. The first ring body includes a first tapered face on the other side in the axial direction and on the other side in the radial direction. The second ring body includes a second tapered face on the one side in the axial direction and on the one side in the radial direction. Either of the first or second ring body includes an air path. One of the first and second ring body includes a secondary side member, and the other ring body includes a primary side member.
Abstract:
A control apparatus for controlling a motor performing pressure control includes circuitry which calculates a detected speed of a motor based on an input pressure command, sensor reaction force, movable part viscous damping force and movable part mass, outputs the detected speed, calculates the movable part viscous damping force by multiplying the detected speed by a movable part viscous damping coefficient to calculate the detected speed, calculates a detected position of the motor by integrating the detected speed, outputs the detected position, calculates a sensor viscous damping pressure by multiplying the detected speed by a sensor viscous damping coefficient, calculates a sensor spring pressure by multiplying the detected position by a sensor spring constant, calculates a detected pressure of a pressure sensor by adding the sensor spring pressure to the sensor viscous damping pressure, and outputs the sensor reaction force which is the detected pressure to calculate the detected speed.
Abstract:
A motor controller to control a motor includes a position controller, a speed controller, a first integrator, and a second integrator. The position controller is configured to generate a speed command based on a position error between a position command and a motor position. The speed controller is configured to generate a torque command to be input to the motor based on a speed error between the speed command and a motor speed. The first integrator is configured to calculate an integral value of the position error to be added to the position error. The second integrator is configured to calculate an integral value of the speed error to be added to the speed error.
Abstract:
This disclosure discloses a motor control apparatus including a current conversion part, a voltage control part, a current detection part, and a phase compensation part. The current conversion part generates a voltage command on the basis of a current deviation between a current command and an estimated current. The voltage control part controls an output voltage to a motor. The current detection part detects a motor current. The phase compensation part inputs the detected motor current and the voltage command and outputs, as the estimated current, the motor current in which a delay in phase of the motor current relative to the current command has been compensated.
Abstract:
A motor control device according to an embodiment includes a first subtractor, a speed controller, and a phase compensating speed observer. The first subtractor subtracts a speed reference from a speed feedback signal to obtain a speed deviation. The speed controller receives the speed deviation and outputs a first torque reference. The phase compensating speed observer receives the first torque reference and a speed of a controlled object including a motor, and outputs the speed feedback signal. The phase compensating speed observer includes a delay element model having an integral element of an order optimally satisfying a setting condition based on a degree of easiness for implementation and a degree of usefulness for phase delay compensation of the speed feedback signal to the speed reference.