DOWNHOLE METHOD FOR DETERMINING GEOLOGIC PERMEABILITY

    公开(公告)号:US20210372956A1

    公开(公告)日:2021-12-02

    申请号:US17402666

    申请日:2021-08-16

    Abstract: A method for predicting formation permeability by measuring diffusional tortuosity in several directions by pulse gradient NMR. The method comprises evaluating an anisotropic diffusion coefficient by pulsed gradient NMR, determining diffusional tortuosity from the restricted diffusion data, supplementing the NMR results with resistivity and sonic logging data, measuring anisotropic tortuosity and porosity by resistivity and sonic data and combining all components in a single fitting model. The 11-coefficient model is trained to recognize the true values of permeability by comparing the real oil permeabilities measured in a library of oil-carrying rock cores with the NMR, resistivity and sonic correlates. The fitting coefficients are extracted by minimizing the discrepancy between the laboratory measured permeabilities and the predicted values combining all rapid logging information components with the agreement-maximizing weights.

    METHOD FOR DOWNHOLE DETERMINATION OF PERMEABILITY ANISOTROPY USING NMR

    公开(公告)号:US20220003695A1

    公开(公告)日:2022-01-06

    申请号:US17402657

    申请日:2021-08-16

    Abstract: A method for predicting formation permeability by measuring diffusional tortuosity in several directions by pulse gradient NMR. The method comprises evaluating an anisotropic diffusion coefficient by pulsed gradient NMR, determining diffusional tortuosity from the restricted diffusion data, supplementing the NMR results with resistivity and sonic logging data, measuring anisotropic tortuosity and porosity by resistivity and sonic data and combining all components in a single fitting model. The 11-coefficient model is trained to recognize the true values of permeability by comparing the real oil permeabilities measured in a library of oil-carrying rock cores with the NMR, resistivity and sonic correlates. The fitting coefficients are extracted by minimizing the discrepancy between the laboratory measured permeabilities and the predicted values combining all rapid logging information components with the agreement-maximizing weights.

    NMR method for determining permeability in geologic formation

    公开(公告)号:US20220003696A1

    公开(公告)日:2022-01-06

    申请号:US17402662

    申请日:2021-08-16

    Abstract: A method for predicting formation permeability by measuring diffusional tortuosity in several directions by pulse gradient NMR. The method comprises evaluating an anisotropic diffusion coefficient by pulsed gradient NMR, determining diffusional tortuosity from the restricted diffusion data, supplementing the NMR results with resistivity and sonic logging data, measuring anisotropic tortuosity and porosity by resistivity and sonic data and combining all components in a single fitting model. The 11-coefficient model is trained to recognize the true values of permeability by comparing the real oil permeabilities measured in a library of oil-carrying rock cores with the NMR, resistivity and sonic correlates. The fitting coefficients are extracted by minimizing the discrepancy between the laboratory measured permeabilities and the predicted values combining all rapid logging information components with the agreement-maximizing weights.

    METHOD FOR DETERMINING PERMEABILITY IN A HYDROCARBON FORMATION

    公开(公告)号:US20210372955A1

    公开(公告)日:2021-12-02

    申请号:US17402660

    申请日:2021-08-16

    Abstract: A method for predicting formation permeability by measuring diffusional tortuosity in several directions by pulse gradient NMR. The method comprises evaluating an anisotropic diffusion coefficient by pulsed gradient NMR, determining diffusional tortuosity from the restricted diffusion data, supplementing the NMR results with resistivity and sonic logging data, measuring anisotropic tortuosity and porosity by resistivity and sonic data and combining all components in a single fitting model. The 11-coefficient model is trained to recognize the true values of permeability by comparing the real oil permeabilities measured in a library of oil-carrying rock cores with the NMR, resistivity and sonic correlates. The fitting coefficients are extracted by minimizing the discrepancy between the laboratory measured permeabilities and the predicted values combining all rapid logging information components with the agreement-maximizing weights.

    MEASUREMENT METHOD FOR DETERMINING RESISTIVITY AND PERMEABILITY IN A BOREHOLE

    公开(公告)号:US20210372954A1

    公开(公告)日:2021-12-02

    申请号:US17402659

    申请日:2021-08-16

    Abstract: A method for predicting formation permeability by measuring diffusional tortuosity in several directions by pulse gradient NMR. The method comprises evaluating an anisotropic diffusion coefficient by pulsed gradient NMR, determining diffusional tortuosity from the restricted diffusion data, supplementing the NMR results with resistivity and sonic logging data, measuring anisotropic tortuosity and porosity by resistivity and sonic data and combining all components in a single fitting model. The 11-coefficient model is trained to recognize the true values of permeability by comparing the real oil permeabilities measured in a library of oil-carrying rock cores with the NMR, resistivity and sonic correlates. The fitting coefficients are extracted by minimizing the discrepancy between the laboratory measured permeabilities and the predicted values combining all rapid logging information components with the agreement-maximizing weights.

    METHOD FOR EVALUATION OF PERMEABILITY ANISOTROPY USING NMR DIFFUSION MEASUREMENTS FOR OIL AND GAS WELLS

    公开(公告)号:US20210285902A1

    公开(公告)日:2021-09-16

    申请号:US16818467

    申请日:2020-03-13

    Abstract: A method for predicting formation permeability by measuring diffusional tortuosity in several directions by pulse gradient NMR. The method comprises evaluating an anisotropic diffusion coefficient by pulsed gradient NMR, determining diffusional tortuosity from the restricted diffusion data, supplementing the NMR results with resistivity and sonic logging data, measuring anisotropic tortuosity and porosity by resistivity and sonic data and combining all components in a single fitting model. The 11-coefficient model is trained to recognize the true values of permeability by comparing the real oil permeabilities measured in a library of oil-carrying rock cores with the NMR, resistivity and sonic correlates. The fitting coefficients are extracted by minimizing the discrepancy between the laboratory measured permeabilities and the predicted values combining all rapid logging information components with the agreement-maximizing weights.

Patent Agency Ranking