Abstract:
A formation evaluating system including a sonic sensor device attached to a drill string adjacent to a bit includes a sonic source and a first sonic receiver aligned adjacent to the sonic source, and a second sonic receiver aligned with a horizontal offset X Three kind of two-way trip times are measured: from the sonic source to a) the first receiver after a reflection at the borehole wall, b) the first receiver after propagation in a layer below the borehole wall, an invaded zone, and a reflection at an interface below the borehole wall, and c) the second receiver after oblique propagations in the invaded zone and a reflection at the interface. After determining a sonic speed in the drilling mud and a sonic speed in a matrix of the invaded zone, a porosity and a thickness of the invaded zone are estimated based on a time average equation.
Abstract:
A drilling fluid composition that contains micronized barite particles with a particle size in the range of 1 to 5 μm, and also a method of fracturing a subterranean formation using the drilling fluid composition. Various embodiments of the micronized barite particles and the method of making thereof, the drilling fluid composition, and the method of fracturing a subterranean formation are also provided.
Abstract:
A method to measure acid diversion efficiency in rock samples. The method includes measuring a first porosity and a permeability of the rock samples. The method includes flooding a core region of the rock sample with a hydrochloric acid (HCl) system to create a wormhole, wherein during the flooding the HCl system penetrates from a first end of the rock sample to a second end of the rock sample to form the wormhole. The method includes measuring a second porosity, a pore size distribution, and a diffusion tortuosity of the rock samples with NMR. The method includes establishing a diversion index (DI) based off a ratio between the diffusion tortuosity in a first direction and the diffusion tortuosity in a second direction. The method includes determining the acid diversion efficiency based off the diversion index.
Abstract:
A drilling fluid includes an aqueous base fluid; 1 to 30 wt. % of an okra composition; 10 wt. % of clay particles; and 0.005 to 0.5 wt. % of a base, each wt. % based on a total weight of the drilling fluid composition. The okra composition is uniformly disposed on surfaces of the clay particles. The clay particles disposed with the okra composition are present in the drilling fluid composition in the form of a composite. A pellet made from the clay particles treated with the okra composition has a swelling value at least 75% less than a swelling value of the pellet in an aqueous composition that does not contain the okra composition, as determined by a linear swell meter. A method of making the drilling fluid composition.
Abstract:
A method for predicting formation permeability by measuring diffusional tortuosity in several directions by pulse gradient NMR. The method comprises evaluating an anisotropic diffusion coefficient by pulsed gradient NMR, determining diffusional tortuosity from the restricted diffusion data, supplementing the NMR results with resistivity and sonic logging data, measuring anisotropic tortuosity and porosity by resistivity and sonic data and combining all components in a single fitting model. The 11-coefficient model is trained to recognize the true values of permeability by comparing the real oil permeabilities measured in a library of oil-carrying rock cores with the NMR, resistivity and sonic correlates. The fitting coefficients are extracted by minimizing the discrepancy between the laboratory measured permeabilities and the predicted values combining all rapid logging information components with the agreement-maximizing weights.
Abstract:
Amidoamine-based gemini surfactants having dual chains connected via an arylene or heteroarylene linker. Each chain contains a quaternary ammonium head group and an ethoxylated alkyl tail. A water-based drilling fluid containing the gemini surfactant is also provided. As examined by linear swelling and free swelling tests, the gemini surfactant is effective in reducing clay swelling.
Abstract:
A drilling fluid composition that contains micronized barite particles with a particle size in the range of 1 to 5 μm, and also a method of fracturing a subterranean formation using the drilling fluid composition. Various embodiments of the micronized barite particles and the method of making thereof, the drilling fluid composition, and the method of fracturing a subterranean formation are also provided.
Abstract:
A well-bore monitoring process involving logging the temperature of a soil, rock, and brine mixture present in a carbonate formation continuously, and simultaneously logging the resistivity of the soil, rock, and brine mixture in the carbonate formation continuously. The logged temperature and the logged resistivity are interpreted whereby concurrent events in the logged temperature and the logged resistivity identify dissolution of rock into the mixture and precipitation of scale from the mixture. The simultaneous logging of the temperature and the resistivity is conducted in a well-bore in the carbonate rock formation.
Abstract:
A drilling fluid composition includes an aqueous base fluid, 0.01 to 10 wt. % of a date palm leaves extract (DPLE), 1 to 10 wt. % of clay particles, and 0.01 to 1 wt. % of a base, where each wt. % based on a total weight of the drilling fluid composition. The DPLE is homogenously disposed on surfaces of the clay particles. The clay particles disposed with the DPLE are present in the drilling fluid composition in the form of a composite. A pellet made from the clay particles treated with the DPLE has a swelling value at least 75% less than a swelling value of the pellet in an aqueous composition that does not contain the DLPE. A method of making the drilling fluid composition.
Abstract:
Cementing compositions containing a hydraulic cement, halloysite nanoparticles, and silica flour. The cementing compositions may optionally include other additives such as a friction reducer, a defoamer, and a fluid loss additive. Cement samples made therefrom and methods of producing such cement samples are also specified. The addition of halloysite nanoparticles and silica flour provides enhanced mechanical strength (e.g. compressive strength, flexural strength) and improved durability (e.g. resistance to CO2 and salinity) to the cement, making them suitable cementing material for oil and gas wells.