Gas-assisted liguid fuel oxygen reactor

    公开(公告)号:US10215402B2

    公开(公告)日:2019-02-26

    申请号:US15087300

    申请日:2016-03-31

    Abstract: The present disclosure is directed to systems and methods for low-CO2 emission combustion of liquid fuel with a gas-assisted liquid fuel oxygen reactor. The system comprises an atomizer that sprays fuel and CO2 into an evaporation zone, where the fuel and CO2 is heated into a vaporized form. The system comprises a reaction zone that receives the vaporized fuel and CO2. The system includes an air vessel having an air stream, and a heating vessel adjacent to the air vessel that transfers heat to the air vessel. The system comprises an ion transport membrane in flow communication with the air vessel and reaction zone. The ion transport membrane receives O2 permeating from the air stream and transfers the O2 into the reaction zone resulting in combustion of fuel. The combustion produces heat and creates CO2 exhaust gases that are recirculated in the system limiting emission of CO2.

    Gas turbine combustion system with controller

    公开(公告)号:US11441780B2

    公开(公告)日:2022-09-13

    申请号:US17405339

    申请日:2021-08-18

    Abstract: An integrated ITM micromixer burner shell and tube design for clean combustion in gas turbines includes an oxy-fuel micromixer burner for separating oxygen from air within the burner to perform oxy-combustion, resulting in an exhaust stream that consists of CO2 and H2O. The shell and tube combustion chamber is designed so that preheated air enters a headend having an array of ion transfer membrane (ITM) tubes that separate oxygen from the preheated air and anchor flamelets on the shell side. The combustion products of the oxy-fuel flamelets expand through a turbine for power generation, before H2O is separated from CO2 by condensation. A portion of the effluent CO2 is compressed back into the burner system, while the remainder is captured for sequestration/utilization.

    POWER TURBINE SYSTEM WITH FUEL INJECTOR AND CONDENSOR

    公开(公告)号:US20190107084A1

    公开(公告)日:2019-04-11

    申请号:US16209209

    申请日:2018-12-04

    Abstract: The power turbine system includes two power turbines communicating with an ion transport membrane (ITM) reactor. Heavy liquid fuel is atomized and burned within the reactor to drive the first turbine, with the first turbine producing useful power. Exhaust from the first turbine is recycled back into the reactor. The reactor includes a series of concentric cylindrical ion transport membranes that separate atmospheric and exhaust gases into suitable components for combustion therein, with at least some of the gases being “cracked” to alter their molecular structure for further combustion to power the second turbine. The second turbine drives a compressor to supply air to the reactor. At least one of the ITMs precludes atmospheric nitrogen from the combustion processes, with the resulting exhaust including pure water and carbon dioxide. The carbon dioxide is either recycled into the reactor to facilitate fuel atomization, or compressed for sequestration.

    Power turbine system
    6.
    发明授权

    公开(公告)号:US10202946B2

    公开(公告)日:2019-02-12

    申请号:US15084448

    申请日:2016-03-29

    Abstract: The power turbine system includes two power turbines communicating with an ion transport membrane (ITM) reactor. Heavy liquid fuel is atomized and burned within the reactor to drive the first turbine, with the first turbine producing useful power. Exhaust from the first turbine is recycled back into the reactor. The reactor includes a series of concentric cylindrical ion transport membranes that separate atmospheric and exhaust gases into suitable components for combustion therein, with at least some of the gases being “cracked” to alter their molecular structure for further combustion to power the second turbine. The second turbine drives a compressor to supply air to the reactor. At least one of the ITMs precludes atmospheric nitrogen from the combustion processes, with the resulting exhaust including pure water and carbon dioxide. The carbon dioxide is either recycled into the reactor to facilitate fuel atomization, or compressed for sequestration.

    Clean power generation system for gas power turbines

    公开(公告)号:US11421879B2

    公开(公告)日:2022-08-23

    申请号:US17400728

    申请日:2021-08-12

    Abstract: An integrated ITM micromixer burner shell and tube design for clean combustion in gas turbines includes an oxy-fuel micromixer burner for separating oxygen from air within the burner to perform oxy-combustion, resulting in an exhaust stream that consists of CO2 and H2O. The shell and tube combustion chamber is designed so that preheated air enters a headend having an array of ion transfer membrane (ITM) tubes that separate oxygen from the preheated air and anchor flamelets on the shell side. The combustion products of the oxy-fuel flamelets expand through a turbine for power generation, before H2O is separated from CO2 by condensation. A portion of the effluent CO2 is compressed back into the burner system, while the remainder is captured for sequestration/utilization.

    Gas-assisted liquid fuel oxygen reactor

    公开(公告)号:US10995948B2

    公开(公告)日:2021-05-04

    申请号:US16267030

    申请日:2019-02-04

    Abstract: The present disclosure is directed to systems and methods for low-CO2 emission combustion of liquid fuel with a gas-assisted liquid fuel oxygen reactor. The system comprises an atomizer that sprays fuel and CO2 into an evaporation zone, where the fuel and CO2 is heated into a vaporized form. The system comprises a reaction zone that receives the vaporized fuel and CO2. The system includes an air vessel having an air stream, and a heating vessel adjacent to the air vessel that transfers heat to the air vessel. The system comprises an ion transport membrane in flow communication with the air vessel and reaction zone. The ion transport membrane receives O2 permeating from the air stream and transfers the O2 into the reaction zone resulting in combustion of fuel. The combustion produces heat and creates CO2 exhaust gases that are recirculated in the system limiting emission of CO2.

Patent Agency Ranking