Abstract:
A method for preparing multi-wall carbon nanotubes comprising atomizing a precursor solution comprising an aromatic hydrocarbon and a carrier gas. The mixture is then injected through an ultrasonic atomization system to form atomized precursor droplets. Then by injecting the atomized precursor droplets from the top of a vertical chemical vapor deposition reactor, the droplets can then react with a reaction gas in the reactor vessel to form a film that adsorbs to a growth surface in the reactor vessel. Layer by layer multi-wall carbon nanotubes are formed. This method is repeated to form layers of the multi-wall carbon nanotubes. The nanotubes formed have an outer diameter of 10 nm-51 nm and a length to diameter aspect ratio of 7200-13200.
Abstract:
Methods and compositions for the adsorptive removal of methyl tertiary butyl ether (MTBE) from contaminated water sources and systems. The compositions contain carbon fly ash doped with silver nanoparticles at specific mass ratios. Methods of preparing and characterizing the adsorbents are also provided.
Abstract:
A process for making an iron oxide impregnated carbon nanotube membrane. In this template-free and binder-free process, iron oxide nanoparticles are homogeneously dispersed onto the surface of carbon nanotubes by wet impregnation. The amount of iron oxide nanoparticles loaded on the carbon nanotubes range from 0.25-80% by weight per total weight of the doped carbon nanotubes. The iron oxide doped carbon nanotubes are then pressed to forma carbon nanotube disc which is then sintered at high temperatures to form a mixed matrix membrane of iron oxide nanoparticles homogeneously dispersed across a carbon nanotube matrix. Methods of characterizing porosity, hydrophilicity and fouling potential of the carbon nanotube membrane are also described.
Abstract:
The present disclosure provides a method for removing sulfur compounds from a fuel containing sulfur compounds. The method includes contacting the fuel with an adsorbent that comprises a carbonaceous material doped with nanoparticles of aluminum oxide to reduce the concentrations of the sulfur compounds. The carbonaceous material is at least one selected from the group consisting of activated carbon, carbon nanotubes, and graphene oxide, and the adsorbent has a weight ratio of C to Al in the range from 3:1 to 30:1, and a weight ratio of C to O in the range from 1:1 to 10:1.
Abstract:
Methods and nanocomposites for the adsorptive removal of aromatic hydrocarbons such as benzene, toluene, ethyl benzene and xylene from contaminated water sources and systems are provided. The nanocomposites contain carbon nanotubes and metal oxide nanoparticles such as Al2O3, Fe2O3 and ZnO impregnated on a surface and/or in pore spaces of the carbon nanotubes. Methods of preparing and characterizing the nanocomposite adsorbents are also provided.
Abstract translation:提供了从受污染的水源和系统吸附除去苯,甲苯,乙苯和二甲苯等芳烃的方法和纳米复合材料。 纳米复合材料包含碳纳米管和金属氧化物纳米颗粒,例如浸渍在碳纳米管的表面和/或孔隙空间中的Al 2 O 3,Fe 2 O 3和ZnO。 还提供了制备和表征纳米复合吸附剂的方法。
Abstract:
Methods and compositions for the adsorptive removal of methyl tertiary butyl ether (MTBE) from contaminated water sources and systems. The compositions contain carbon fly ash doped with silver nanoparticles at specific mass ratios. Methods of preparing and characterizing the adsorbents are also provided.
Abstract:
A nanofluid composed of a base fluid and a solid nanocomposite particle, where the solid nanocomposite particle consists of a carbon nanotube and a metal oxide nanoparticle selected from the group consisting of Fe2O3, Al2O3, and CuO. The metal oxide nanoparticle is affixed inside of or to the outer surface of the carbon nanotube, and the solid nanocomposite particle is homogeneously dispersed in the base fluid. The heat transfer and specific heat capacity properties of the nanofluid are measured using differential scanning calorimetry and heat exchanger experiments with different nanocomposite concentrations and different metal oxide percent loadings.
Abstract:
A method for preparing multi-wall carbon nanotubes comprising atomizing a precursor solution comprising an aromatic hydrocarbon and a carrier gas. The mixture is then injected through an ultrasonic atomization system to form atomized precursor droplets. Then by injecting the atomized precursor droplets from the top of a vertical chemical vapor deposition reactor, the droplets can then react with a reaction gas in the reactor vessel to form a film that adsorbs to a growth surface in the reactor vessel. Layer by layer multi-wall carbon nanotubes are formed. This method is repeated to form layers of the multi-wall carbon nanotubes. The nanotubes formed have an outer diameter of 10 nm-51 nm and a length to diameter aspect ratio of 7200-13200.
Abstract:
A method for preparing multi-wall carbon nanotubes comprising atomizing a precursor solution comprising an aromatic hydrocarbon and a carrier gas. The mixture is then injected through an ultrasonic atomization system to form atomized precursor droplets. Then by injecting the atomized precursor droplets from the top of a vertical chemical vapor deposition reactor, the droplets can then react with a reaction gas in the reactor vessel to form a film that adsorbs to a growth surface in the reactor vessel. Layer by layer multi-wall carbon nanotubes are formed. This method is repeated to form layers of the multi-wall carbon nanotubes. The nanotubes formed have an outer diameter of 10 nm-51 nm and a length to diameter aspect ratio of 7200-13200.
Abstract:
Methods and compositions for the adsorptive removal of methyl tertiary butyl ether (MTBE) from contaminated water sources and systems. The compositions contain carbon fly ash doped with silver nanoparticles at specific mass ratios. Methods of preparing and characterizing the adsorbents are also provided.