Abstract:
A measuring element formed of a piezoelectric crystal of symmetry class 32 for measuring a force Fz, which acts perpendicularly on the plane x-y and causes a charge accumulation on surfaces of the plane x-y. Applications are measurements in which the transverse forces Fxy orthogonal to the force Fz, which generate an error signal at the measuring element, are expected on the measuring body. The measuring element includes at least four identical measuring element segments having straight edges. In the x-y plane the segments are arranged side by side and spaced apart by narrow gaps at the edges. Together, the segments form the shape of a disc or perforated disc for reducing the interference signals caused by the transverse forces Fxy on the measuring element. The crystal orientations in the x-y plane of all segments are oriented in the same direction or orthogonal to each other.
Abstract:
A tool received in a tool holding fixture of a tool holder includes a tool shank defining a recess and a force sensor arranged in the recess. During operation of the tool, the force sensor measures a tool force exerted by the tool shank onto the tool holder. A method for measuring a tool force by using the tool includes the steps of: arranging the force sensor between the tool shank and the tool holding fixture; clamping the force sensor by means of a clamping device of the tool holding fixture; operating the tool; and using the force sensor to measure the tool force exerted by the tool shank onto the tool holder.
Abstract:
A measuring element formed of a piezoelectric crystal of symmetry class 32 for measuring a force Fz, which acts perpendicularly on the plane x-y and causes a charge accumulation on surfaces of the plane x-y, Applications are measurements in which the transverse forces Fxy orthogonal to the force Fz, which generate an error signal at the measuring element, are expected on the measuring body. The measuring element includes at least four identical measuring element segments having straight edges. In the x-y plane the segments are arranged side by side and spaced apart by narrow gaps at the edges. Together, the segments form the shape of a disc or perforated disc for reducing the interference signals caused by the transverse forces Fxy on the measuring element. The crystal orientations in the x-y plane of all segments are oriented in the same direction or orthogonal to each other.
Abstract:
A cutting machine configured for the chip-removing machining of a workpiece includes a plurality of required tools. Each tool can exert a tool force onto the workpiece. The cutting machine includes a tool holder for simultaneously holding all of the tools required for operating on the workpiece. A tool slide moves the tool holder to successively align one of the tools to operate on the workpiece, and the tool and the workpiece are movable for chip-removing machining in each manufacturing step. The tool holder includes at least two single-component force transducers. Each single-component force transducer measures a tool force exerted by one of the tools during the chip-removing machining of the workpiece in a force main connection.
Abstract:
The invention relates to a piezoelectric force sensor (1) comprising a housing (10) having at least one piezoelectric body (11) and an electrode (12) electrically connected to said body (11), wherein a connection device (13) for forwarding measurement signals having a contact pin (131) is fastened or molded on the housing (10). The contact pin (131) is connected to the electrode (12) in an electrically conductive manner. According to the invention, a helical compression spring (14) is electrically conductively connected to the contact pin (131) as an electrical connection within the piezoelectric force sensor (1). For this purpose, the helical compression spring (14) is removably electrically conductively connected to the electrode (12) in an operative manner so that the contact pin (131) has a spatial clearance from the electrode (12) and measurement signals from the electrode (12) can be extracted from the housing (10) of the piezoelectric force sensor (1) via the helical compression spring (14) and the connected contact pin (131) and can be picked up on the connection device (13).
Abstract:
A tool received in a tool holding fixture of a tool holder includes a tool shank defining a recess and a force sensor arranged in the recess. During operation of the tool, the force sensor measures a tool force exerted by the tool shank onto the tool holder. A method for measuring a tool force by using the tool includes the steps of: arranging the force sensor between the tool shank and the tool holding fixture; clamping the force sensor by means of a clamping device of the tool holding fixture; operating the tool; and using the force sensor to measure the tool force exerted by the tool shank onto the tool holder.
Abstract:
The invention relates to a component transducer (20) for sensing a torque component (Mx, My, Mz); wherein an element (21) made of piezoelectric crystal material comprises element surfaces; wherein a force component (Fx, Fy, Fz) produces electric polarization charges on the element surfaces; and wherein the torque component (Mx, My, Mz) to be sensed consists of at least one pair having force components (+Fx, −Fx; +Fy, −Fy; +Fz, −Fz) wherein said force components (+Fx, −Fx; +Fy, −Fy; +Fz, −Fz) of a pair have the same axis of action and opposite directions of action. The component transducer (20) receives the force components (+Fx, −Fx; +Fy, −Fy; +Fz, −Fz) of a pair separately.
Abstract:
A device for force and torque detection includes piezoelectric force measuring cells that are mechanically biased in a horizontal working plane against end surfaces of a mounting platform and detect power components. At least one first end surface of the mounting platform is disposed obliquely to at least one second end surface.